Biological complexity: lysosome function (Introduction)

by David Turell @, Tuesday, September 27, 2022, 21:04 (788 days ago) @ David Turell

How molecular garbage is dumped:

https://phys.org/news/2022-09-world-lysosomes.html

"'Found in cells throughout the human body, lysosomes are tiny organelles responsible for breaking down cellular waste products and salvaging reusable molecules as building blocks for cellular components," explained Ms. Menglan He, co-first-author of the study and MD-Ph.D. candidate with the Integrated Biology and Medicine Ph.D. track at Duke-NUS. "When lysosomes malfunction due to rare genetic disorders, this creates a build-up of toxic cellular waste products and affects other organelles, causing organ and cellular pathologies such as neurodegeneration."

***


"Their findings revealed that an MFS protein called Spns1 transports the broken-down products of two phospholipids, phosphatidylcholine and phosphatidylethanolamine—which are important building blocks for the structure and function of living cells—out of lysosomes and into the cytoplasm. The two molecules then go through pathways that recycle them into their original lipid forms so they can be reincorporated into the cell.

"'Scientists know quite a lot about the molecular processes involved in breaking down and transporting some molecules out of lysosomes," added Dr. Alvin Kuk, who is also a co-first-author of the study and Postdoctoral Research Fellow with the Cardiovascular & Metabolic Disorders (CVMD) Program at Duke-NUS. "But when it comes to the two lipids, phosphatidylcholine and phosphatidylethanolamine that represent the most abundant phospholipids of cell membranes, very little is known."

"The scientists further found that Spns1 deficiency in cells and preclinical models led to the pathological accumulation of breakdown products of the two lipids inside lysosomes. This accumulation led to various disease states, including signs of increased inflammation.

""Historically, it has been difficult to identify lysosomal lipid transporters, limiting our understanding of the role of the lysosome in lipid metabolism and disease," said Professor David Silver, the lead senior co-author of the study and Deputy Director of the CVMD Program at Duke-NUS. "This study provides a framework to investigate how this new transporter works and its role in health and disease.""

Comment: a complex design that requires very specific molecules requires a designer. Not by chance.


Complete thread:

 RSS Feed of thread

powered by my little forum