Biological complexity: protein folding highly complex (Introduction)

by David Turell @, Monday, March 06, 2017, 00:54 (2580 days ago) @ David Turell

New techniques reveal protein folding is much more complex than previously shown. Only precise properly folded proteins can function effectively:

https://www.nist.gov/news-events/news/2017/03/jila-team-discovers-many-new-twists-prote...

Biophysicists at JILA have measured protein folding in more detail than ever before, revealing behavior that is surprisingly more complex than previously known. The results suggest that, until now, much about protein behavior has been hidden to science—happening on faster timescales and with finer changes in structure than conventional methods could detect.

The JILA research revealed many previously unknown states by unfolding an individual protein. For example, the JILA team identified 14 intermediate states—seven times as many as previously observed—in just one part of bacteriorhodopsin, a protein in microbes that converts light to chemical energy and is widely studied in research.

“The increased complexity was stunning,” said project leader Tom Perkins, a National Institute of Standards and Technology (NIST) biophysicist working at JILA, a partnership of NIST and the University of Colorado Boulder. “Better instruments revealed all sorts of hidden dynamics that were obscured over the last 17 years when using conventional technology.”

“If you miss most of the intermediate states, then you don’t really understand the system,” he said.

Knowledge of protein folding is important because proteins must assume the correct 3-D structure to function properly. Misfolding may inactivate a protein or make it toxic. Several neurodegenerative and other diseases are attributed to incorrect folding of certain proteins. Over the last 50 years, protein folding has become the focus of a large, interdisciplinary research field.

***

The JILA team found that intermediate states were not only more numerous than expected but also lasted as little as 8 microseconds. The findings resolved long-standing discrepancies between past experimental data and molecular simulations, giving confidence to using such simulations to further probe the behavior of membrane proteins.

Comment: The complexity of living biochemicals increases by leaps and bounds as research is refined. As Tony just suggested, God is in charge of design. Not by chance.


Complete thread:

 RSS Feed of thread

powered by my little forum