Biological complexity: complex growth factors shown (Introduction)

by David Turell @, Friday, October 11, 2019, 20:16 (230 days ago) @ dhw

Very skilled demonstration of the enormous complexity of protein molecules controlling growth of cells:

"A team of Whitehead Institute scientists has for the first time revealed the molecular structure of a critical growth regulator bound to its partner proteins, creating a fine-grained view of how they interact to sense nutrient levels and control cell growth. Their findings, described in the October 10th online issue of Science, help answer longstanding questions about how the mTORC1 kinase, and its anchoring complex, Rag-Ragulator, work at a molecular level. Using cryo-electron microscopy, the researchers uncover key structures, including a large coiled region and a small, flexible claw. These discoveries help explain the biology of mTORC1 and also lay the foundation for a new generation of drugs that are more precisely tailored to its distinct molecular makeup.


"mTORC1 is a massive protein complex that enables cells to respond appropriately when food is either abundant or scarce, and has been implicated in a wide range of human diseases, including cancer, diabetes, and neurodegenerative disease. It operates within tiny compartments known as lysosomes—miniature recycling stations of the cell. In order to sense nutrient levels in the lysosome, and become active, mTORC1 must first dock at the lysosomal surface, where it meets up with its anchoring protein (called Rag-Ragulator).

"However, this docking is an exquisitely complicated affair. It is regulated by a handful of proteins: an mTORC1 subunit (called Raptor) and the Rag GTPases, which bind Raptor as a non-identical pair and act like a control switch. This switch has four settings: one, which is used when nutrients are high, allows mTORC1 to dock at the lysosome and become active; the other three are used in times of hunger to push the complex away from the lysosomal surface and thereby deactivate it.


"With a detailed protein structure in hand, Rogala and his colleagues were able to discern some key structural elements. One, which they describe for the first time, is a claw-like appendage that interacts with one of the Rag GTPases (known as RagC). The other is a large, coiled structure, shaped like a solenoid, that faces RagA.

"'We think that, together, these two structures are acting as detectors for the Rag GTPases—so, is the switch in the right configuration for docking at the lysosome or not?" says Rogala."

Comment: Be sure to look at the diagram of these molecules. These complex giant molecules have to be designed.

Complete thread:

 RSS Feed of thread

powered by my little forum