Biological complexity: automatic molecular switches (Introduction)

by David Turell @, Monday, September 19, 2016, 18:52 (2770 days ago) @ David Turell

No consciousness involved, just molecules that give signals:-http://medicalxpress.com/news/2016-09-molecular-immune-suppression-immunotherapies.html-"The researchers identified a molecular switch that controls immune suppression, opening the possibility to further improving and refining emerging immunotherapies that boost the body's own abilities to fight diseases ranging from cancer to Alzheimer's and Crohn's disease. -***-"When confronted by pathogens, injury or disease, the initial response of the body's immune system comes in the form of macrophages, a type of white blood cell that express pro-inflammatory proteins called cytokines that, in turn, activate T cells, another immune cell, to attack the health threat. The macrophages then switch gears to express other cytokines that dampen T cell activation, stimulating tissue repair.-***-"In the Nature paper, Varner and colleagues pinpoint a key, suspected player: an enzyme in macrophages called PI-3 kinase gamma (PI3Ky). In mouse studies, they found that macrophage PI3Ky signaling promotes immune suppression by inhibiting activation of anti-tumor T cells. Blocking PI3Ky activated the immune response and significantly suppressed growth of implanted tumors in animal models. It also boosted sensitivity of some tumors to existing anti-cancer drugs and synergized with existing immune therapy to eradicate tumors. Varner and her colleagues at the Moores Cancer Center also identified a molecular signature of immune suppression and response in mice and cancer patients that may be used to track the effectiveness of immunotherapy.-***-"In a December 2015 paper published online in Cancer Discovery, Varner and colleagues described animal studies that revealed how disrupting cross-talk between B cells (another type of immune cell) and tumor-associated macrophages inhibited PDAC growth and improved responsiveness to standard-of-care chemotherapy.
Specifically, that research team, which included scientists in San Francisco, Oregon and Switzerland, reported that inhibiting Bruton tyrosine kinase, an enzyme that plays a crucial role in B cell and macrophage functions, restored T cell-dependent anti-tumor immune response. In other words, it reactivated the natural, adaptive immune response in tested mice."-Comment: Once again giant enzyme molecules are part of an automatic control system which encourage or stop the expression of responses. Another example of feedback loop control. How did evolution find those huge complex molecules out of millions available for specific function? Not chance.


Complete thread:

 RSS Feed of thread

powered by my little forum