Introducing the brain: another specific helper molecule (Introduction)

by David Turell @, Monday, June 07, 2021, 18:38 (1263 days ago) @ David Turell

Protects the production of myelin, and diminishes in old age:

https://www.sciencedaily.com/releases/2021/06/210607084633.htm

"A new study has identified a molecule called ten-eleven-translocation 1 (TET1) as a necessary component in the repair of myelin, which protects nerves and facilitates accurate transmission of electrical signals. The discovery could have important implications in treating neurodegenerative diseases and for molecular rejuvenation of aging brains in healthy individuals.

"Recent studies suggest that new brain cells are being formed every day in response to injury, physical exercise, and mental stimulation. Glial cells, and in particular the ones called oligodendrocyte progenitors, are highly responsive to external signals and injuries. They can detect changes in the nervous system and form new myelin, which wraps around nerves and provides metabolic support and accurate transmission of electrical signals. As we age, however, less myelin is formed in response to external signals, and this progressive decline has been linked to the age-related cognitive and motor deficits detected in older people in the general population. Impaired myelin formation also has been reported in older individuals with neurodegenerative diseases such as Multiple Sclerosis or Alzheimer's and identified as one of the causes of their progressive clinical deterioration.

"A new study from the Neuroscience Initiative team at the Advanced Science Research Center at The Graduate Center, CUNY (CUNY ASRC) has identified a molecule called ten-eleven-translocation 1 (TET1) as a necessary component of myelin repair. The research, published today in Nature Communications, shows that TET1 modifies the DNA in specific glial cells in adult brains so they can form new myelin in response to injury.

***

"'We found that TET1 levels progressively decline in older mice, and with that, DNA can no longer be properly modified to guarantee the formation of functional myelin."

"Combining whole-genome sequencing bioinformatics, the authors showed that the DNA modifications induced by TET1 in young adult mice were essential to promote a healthy dialogue among cells in the central nervous system and for guaranteeing proper function. The authors also demonstrated that young adult mice with a genetic modification of TET1 in the myelin-forming glial cells were not capable of producing functional myelin, and therefore behaved like older mice.

"'This newly identified age-related decline in TET1 may account for the inability of older individuals to form new myelin," said Patrizia Casaccia, founding director of the CUNY ASRC Neuroscience Initiative, a professor of Biology and Biochemistry at The Graduate Center, CUNY, and the study's primary investigator."

Comment: Another study finding a specific molecule with necessary specific function. Same thought: how does natural chance evolution stumble into this?


Complete thread:

 RSS Feed of thread

powered by my little forum