Introducing the brain: designed for high efficiency (Introduction)

by David Turell @, Thursday, June 04, 2020, 19:02 (1631 days ago) @ David Turell

It has parallel systems of neurons, not just linear connections as in computers:

http://nautil.us/issue/86/energy/why-is-the-human-brain-so-efficient-rp?mc_cid=1bf5efd4...

"The brain is complex; in humans it consists of about 100 billion neurons, making on the order of 100 trillion connections. It is often compared with another complex system that has enormous problem-solving power: the digital computer. Both the brain and the computer contain a large number of elementary units—neurons and transistors, respectively—that are wired into complex circuits to process information conveyed by electrical signals. At a global level, the architectures of the brain and the computer resemble each other, consisting of largely separate circuits for input, output, central processing, and memory.

***

"As of this writing, however, humans triumph over computers in numerous real-world tasks—ranging from identifying a bicycle or a particular pedestrian on a crowded city street to reaching for a cup of tea and moving it smoothly to one’s lips—let alone conceptualization and creativity.

***

"The calculations performed by the brain, however, are neither slow nor imprecise. For example, a professional tennis player can follow the trajectory of a tennis ball after it is served at a speed as high as 160 miles per hour, move to the optimal spot on the court, position his or her arm, and swing the racket to return the ball in the opponent’s court, all within a few hundred milliseconds... An important difference between the computer and the brain is the mode by which information is processed within each system. Computer tasks are performed largely in serial steps. This can be seen by the way engineers program computers by creating a sequential flow of instructions. For this sequential cascade of operations, high precision is necessary at each step, as errors accumulate and amplify in successive steps. The brain also uses serial steps for information processing. In the tennis return example, information flows from the eye to the brain and then to the spinal cord to control muscle contraction in the legs, trunk, arms, and wrist.

"But the brain also employs massively parallel processing, taking advantage of the large number of neurons and large number of connections each neuron makes. For instance, the moving tennis ball activates many cells in the retina called photoreceptors, whose job is to convert light into electrical signals. These signals are then transmitted to many different kinds of neurons in the retina in parallel. By the time signals originating in the photoreceptor cells have passed through two to three synaptic connections in the retina, information regarding the location, direction, and speed of the ball has been extracted by parallel neuronal circuits and is transmitted in parallel to the brain. Likewise, the motor cortex (part of the cerebral cortex that is responsible for volitional motor control) sends commands in parallel to control muscle contraction in the legs, the trunk, the arms, and the wrist, such that the body and the arms are simultaneously well positioned to receiving the incoming ball.

This massively parallel strategy is possible because each neuron collects inputs from and sends output to many other neurons—on the order of 1,000 on average for both input and output for a mammalian neuron. (By contrast, each transistor has only three nodes for input and output all together.) Information from a single neuron can be delivered to many parallel downstream pathways. At the same time, many neurons that process the same information can pool their inputs to the same downstream neuron. This latter property is particularly useful for enhancing the precision of information processing. For example, information represented by an individual neuron may be noisy (say, with a precision of 1 in 100). By taking the average of input from 100 neurons carrying the same information, the common downstream partner neuron can represent the information with much higher precision (about 1 in 1,000 in this case).

***

"Another salient property of the brain, which is clearly at play in the return of service example from tennis, is that the connection strengths between neurons can be modified in response to activity and experience—a process that is widely believed by neuroscientists to be the basis for learning and memory. Repetitive training enables the neuronal circuits to become better configured for the tasks being performed, resulting in greatly improved speed and precision."(Comment: note complexification is automatic)

Comment: So much for Libet's 'delay' problem, which obviously cannot exist in order to efficiently return a tennis serve. The article primarily is concerned with a computer's inability to think like a human brain. Design cannot be denied and the beginnings of this design started in earlier brains.


Complete thread:

 RSS Feed of thread

powered by my little forum