Introducing the brain (Introduction)

by David Turell @, Tuesday, May 08, 2018, 23:49 (194 days ago)

You have noted on May 7th that you do not understand the brain. I will add as much info as I can to help your understanding of it, and how it function:

https://aeon.co/essays/we-are-more-than-our-brains-on-neuroscience-and-being-human?utm_...

"Brains are undoubtedly somewhat computer-like – computers, after all, were invented to perform brain-like functions – but brains are also much more than bundles of wiry neurons and the electrical impulses they are famous for propagating. The function of each neuroelectrical signal is to release a little flood of chemicals that helps to stimulate or suppress brain cells, in much the way that chemicals activate or suppress functions such as glucose production by liver cells or immune responses by white blood cells. Even the brain’s electrical signals themselves are the products of chemicals called ions that move in and out of cells, causing tiny ripples that can spread independently of neurons.

"Also distinct from neurons are the relatively passive brain cells called glia (Greek for glue) that are roughly equal in number to the neurons but do not conduct electrical signals in the same way. Recent experiments in mice have shown that manipulating these uncharismatic cells can produce dramatic effects on behaviour. In one experiment, a research group in Japan showed that direct stimulation of glia in a brain region called the cerebellum could cause a behavioural response analogous to changes more commonly evoked by stimulation of neurons. Another remarkable study showed that transplantation of human glial cells into mouse brains boosted the animals’ performance in learning tests, again demonstrating the importance of glia in shaping brain function. Chemicals and glue are as integral to brain function as wiring and electricity. With these moist elements factored in, the brain seems much more like an organic part of the body than the idealised prosthetic many people imagine.

***

"It has become a cliché to refer to the brain as ‘the most complex thing in the known Universe’. This saying is inspired by the finding that human brains contain something on the order of 100,000,000,000 neurons, each of which makes about 10,000 connections (synapses) to other neurons. The daunting nature of such numbers provides cover for people who argue that neuroscience will never decipher consciousness, or that free will lurks somehow among the billions and billions.

***

"Some of the most perspicacious animals are the corvids – crows, ravens, and rooks – which have brains less than 1 per cent the size of a human brain, but still perform feats of cognition comparable to chimpanzees and gorillas. ....Within individual orders, animals with similar characteristics also display huge differences in brain size. Among rodents, for instance, we can find the 80-gram capybara brain with 1.6 billion neurons and the 0.3-gram pygmy mouse brain with probably fewer than 60 million neurons. Despite a greater than 100-fold difference in brain size, these species live in similar habitats, display similarly social lifestyles, and do not display obvious differences in intelligence." (my bold)

Comment: Corvids equal to apes!! Major point. It is the complexity that makes the difference, not the size. Answers dhw's weird point. Complexity of cognition is based on complexity. Until complexity arrives, cognition is less. Complexity is not size, nor is a drive for size necessary to have more advanced cognition.


Complete thread:

 RSS Feed of thread

powered by my little forum