Introducing the brain: memory formation (Introduction)

by David Turell @, Wednesday, December 09, 2020, 20:42 (1443 days ago) @ David Turell

Genetic and molecular details in hippocampal neurons:

https://medicalxpress.com/news/2020-12-molecular-underpinnings-long-term-memory.html

"Reporting in Nature on Dec. 9, they describe a newly identified mechanism that neurons in the adult mouse hippocampus use to regulate signals they receive from other neurons, in a process that appears critical for memory consolidation and recall.

***

"The researchers observed that new experiences activate sparse populations of neurons in the hippocampus that express two genes, Fos and Scg2. These genes allow neurons to fine-tune inputs from so-called inhibitory interneurons, cells that dampen neuronal excitation. In this way, small groups of disparate neurons may form persistent networks with coordinated activity in response to an experience.

"'This mechanism likely allows neurons to better talk to each other so that the next time a memory needs to be recalled, the neurons fire more synchronously," Yap said. "We think coincident activation of this Fos-mediated circuit is potentially a necessary feature for memory consolidation, for example, during sleep, and also memory recall in the brain."

"In order to form memories, the brain must somehow wire an experience into neurons so that when these neurons are reactivated, the initial experience can be recalled. In their study, Greenberg, Yap and team set out to explore this process by looking at the gene Fos.

"First described in neuronal cells by Greenberg and colleagues in 1986, Fos is expressed within minutes after a neuron is activated. Scientists have taken advantage of this property, using Fos as a marker of recent neuronal activity to identify brain cells that regulate thirst, torpor and many other behaviors.

***

"Neurons expressing Fos were found to receive increased activity-dampening, or inhibitory, signals from one distinct type of interneuron and decreased inhibitory signals from another type. These signaling patterns disappeared in neurons with blocked Fos expression.

***

"In mice with experimentally silenced Scg2, Fos-activated neurons in the hippocampus displayed a defect in signaling from both types of interneurons. These mice also had defects in theta and gamma rhythms, brain properties thought to be critical features of learning and memory.

'Previous studies had shown that Scg2 codes for a neuropeptide protein that can be cleaved into four distinct forms, which are then secreted. In the current study, Yap and colleagues discovered that neurons appear to use these neuropeptides to fine-tune inputs they receive from interneurons.

"Together, the team's experiments suggest that after a new experience, a small group of neurons simultaneously express Fos, activating Scg2 and its derived neuropeptides, in order to establish a coordinated network with its activity regulated by interneurons.

"'When neurons are activated in the hippocampus after a new experience, they aren't necessarily linked together in any particular way in advance," Greenberg said. "But interneurons have very broad axonal arbors, meaning they can connect with and signal to many cells at once. This may be how a sparse group of neurons can be linked together to ultimately encode a memory."

"The study findings represent a possible molecular- and circuit-level mechanism for long-term memory. They shed new light on the fundamental biology of memory formation and have broad implications for diseases of memory dysfunction."

Comment: This is a look the cellular genetic and molecular level of encoding memories. Note the memory is an abstraction of an event. The brain has recorded it but none of this research explains how consciousness can seek and find it in recall. The soul to brain link is there but never seen. In my view of dualism discussions and debates, this fact must be emphasize: invisibly tied together


Complete thread:

 RSS Feed of thread

powered by my little forum