Evolution: living forms evolve in patterns (Evolution)

by David Turell @, Sunday, August 01, 2021, 16:59 (999 days ago) @ David Turell

When looked at from a biophysical standpoint:

https://nautil.us/issue/102/hidden-truths/the-math-of-living-things

"The Scottish biologist and polymath D’Arcy Wentworth Thompson published On Growth and Form in 1917, with a massive 1,116 page second edition in 1942.1 It explains that the structure of organisms exists “in conformity with physical and mathematical laws.” Arguing that Darwin’s natural selection is incomplete, Thompson showed how to extend the theory of evolution through analysis. He explained the shapes and sizes of animals and their skeletons through the laws of mechanics, and used pure math to show how an animal’s body might develop. The book influenced scientists with its challenges to Darwinian evolution and its compelling explication of the beauties of the natural world. A recent reconsideration praises it as “provocative and inspiring.”

***

"Decades later, the connections seen by Thompson, Schrödinger, and Einstein have grown. One theme in Thompson’s work is the use of pure math to understand the morphology of living things. Thompson explored this by drawing an outline of an organism on a square grid and applying a mathematical transformation such as stretching the grid in one direction. The resulting image resembled another closely related organism—the long body of a parrotfish mathematically became the curved shape of an angelfish. This suggests that an organism’s body develops along preferred directions for cell growth, although math alone does not explain what biochemical and physical processes might cause this.

"Now new mathematical approaches give deeper views into how organisms develop their bodily structures.

***

"Another approach Thompson used to great advantage was the physical one of determining how mechanical quantities such as force affect the size and behavior of organisms. He did this by dimensional analysis, which recognizes that any mechanical quantity can be expressed as a combination of the three physical fundamentals mass M, length L, and time T; for instance, velocity has the dimensions L/T, and force the dimensions ML/T2. From these basics, Thompson showed that big fish swim faster than little ones, and that an insect cannot become monstrously huge. This is because as its size increases, its weight increases faster than the strength of its supporting legs, so as it grew it would soon become unable to function.

***

"Andersen plotted these rates of nutrient intake against the size of the organism from 10-4 millimeters to 1 millimeter and found that size correlates with feeding mode. Smaller organisms feed by diffusion, larger ones actively feed, and those mid-range in size tend to be plants that use photosynthesis. The relative numbers of the three types therefore depends on the level of nutrients and sunlight as they occur across the oceans; for instance, with plentiful nutrients but little light, active and diffusion-based animal feeders dominate plants. Andersen is now developing plankton simulator software based on the underlying physical ideas to provide estimates of plankton diversity and function under different ocean conditions.

***

"Relating information to order and thermodynamics has special meaning in living organisms, which survive, grow and reproduce by maintaining their internal organization. This is implicit in the so-called “central dogma” of molecular biology, the statement by Francis Crick that the information stored in the DNA molecule flows to other molecular processes that make proteins and then a whole organism according to plan. Following the flow of information is therefore a way to describe the thermodynamics of entire biological systems. This opens up the study of properties that arise when the interactions among the system’s components, such as the neurons in the brain, produce new “emergent” high-level behavior.

"This more expansive approach is influencing research at the interface of physics and biology as shown at a 2018 symposium held at Trinity College to celebrate the 75th anniversary of the lectures that became What is Life? The event featured noted scientists who projected where research in new areas related to information and emergent properties, such as complex systems and the network of neurons that constitutes the brain, will take both physics and biology in years to come. Whatever those outcomes, what is surely important is the growing use of a broad approach based on information, which encompasses physical and biological science. Only such a powerful multidisciplinary, even transdisciplinary effort could hope to finally answer Schrödinger’s original question: What is life?"

Comment: It seems God's designs must follow biophysical requirements and patterns as they appear from previous forms. All forms are logically formed following physical requirements. Legs must become flippers


Complete thread:

 RSS Feed of thread

powered by my little forum