Genome complexity: the spliceosome makes mRNA (Introduction)

by David Turell @, Saturday, February 08, 2025, 18:52 (28 days ago) @ David Turell

Avoiding errors:

https://www.sciencedaily.com/releases/2025/02/250207122612.htm

"A complex molecular machine, the spliceosome, ensures that the genetic information from the genome, after being transcribed into mRNA precursors, is correctly assembled into mature mRNA. Splicing is a basic requirement for producing proteins that fulfill an organism's vital functions. Researchers have succeeded for the first time in depicting a faultily 'blocked' spliceosome at high resolution and reconstructing how it is recognized and eliminated in the cell.

***

"The genetic information of all living organisms is contained in the DNA, with the majority of genes in higher organisms being structured in a mosaic-like manner. So the cells are able to "read" the instructions for building proteins stored in these genetic mosaic particles, they are first copied into precursors of mRNA, or messenger RNA. The spliceosome then converts them into mature, functional mRNA. To do this, this large protein-RNA complex, which is located in the cell nucleus, removes non-coding sections (introns) from mRNA precursors and links the coding sections (exons) to form a continuous strand of information. Errors in this process, also known as splicing, are one of the main causes of inheritable genetic disorders and are associated with neurodevelopmental disorders and diseases such as cancer. It was known that the spliceosome has quality control mechanisms, but the mechanistic details were not understood.

***

"Based on this structural information, the scientists were able to understand which errors occur during splicing, how the spliceosome recognizes faulty processes and subsequently aborts the splicing, thereby sorting out the faulty complex. Using the detailed structures, the researchers were also able to model the underlying molecular mechanisms. The proteins involved in this process of cellular quality control are conserved in eukaryotic organisms from fission yeast to humans. The scientists therefore assume that the mechanisms for recognizing and sorting out faulty spliceosomes have remained largely unchanged over the course of evolution."

Comment: more evidence for design. Something this complex cannot appear by chance mutations.


Complete thread:

 RSS Feed of thread

powered by my little forum