Genome complexity: how DNA is packed in cells II (Introduction)

by David Turell @, Friday, February 23, 2018, 21:50 (2464 days ago) @ David Turell

Another study is more explicit:

https://www.quantamagazine.org/how-cells-pack-tangled-dna-into-neat-chromosomes-20180222/

"Their models determined that in the lead-up to mitosis, a ring-shaped protein molecule called condensin II, composed of two connected motors, lands on the DNA. Each of its motors move in opposite directions along the strand while remaining attached to one another, causing a loop to form; as the motors continue to move, that loop gets larger and larger. (Mirny demonstrated the process for me by clasping a piece of his computer’s power cord with both hands, held knuckles to knuckles, through which he then proceeded to push a loop of cord.) As tens of thousands of these protein molecules do their work, a series of loops emerges. The ringlike proteins, positioned at the base of each loop, create a central scaffolding from which the loops emanate, and the entire chromosome becomes shorter and stiffer.

***

"After about 10 minutes, the nuclear envelope keeping the chromosomes together broke down, giving a second ring-shaped motor protein, condensin I, access to the DNA. Those molecules performed loop extrusion on the loops that had already formed, splitting each into around five smaller loops on average. Nesting loops in this way enabled the chromosome to become narrower and prevented the initial loops from growing large enough to mix or interact.

"After approximately 15 minutes, as these loops were forming, the Hi-C data showed something that the researchers found even more unexpected. Typically, sequences located close together along the string of DNA were most likely to interact, while those farther apart were less likely to do so. But the team’s measurements showed that “things [then] kind of came back again in a circle,” Mirny said. That is, once the distance between sequences had grown even further, they again had a higher probability of interacting. “It was obvious from the first glance at this data that we’d never seen something like this before,” he said. His model suggested that condensin II molecules assembled into a helical scaffold, as in the famous Leonardo staircase found in the Chambord Castle in France. The nested loops of DNA radiated out like steps from that spiraling scaffold, packing snuggly into the cylindrical configuration that characterizes the chromosome.

“'So this single process immediately solves three problems,” Mirny said. “It creates a scaffold. It linearly orders the chromosome. And it compacts it in such a way that it becomes an elongated object.'”

Comment: The complexity of this design requires a designing mind to create it. There is no why is could have evolved by chance.


Complete thread:

 RSS Feed of thread

powered by my little forum