Far out cosmology: dhw: Why so many star failures? (Introduction)

by David Turell @, Saturday, February 04, 2023, 16:01 (437 days ago) @ David Turell

From Jan31st miscellany: "dhw: [/b]Billions and billions of stars that come and go, and they all look like design to you. So what do you reckon: another 99% failure rate?"

They are not failures but contribute to the next generation of stars:

https://mail.google.com/mail/u/0/#inbox/FMfcgzGrcPQQfdcQQhzMnfbGkCwDTwxC

"The Sun is a third-generation star, containing the heavier elements from previous generations of stars that lived and died. But first-generation stars must have formed from the primordial hydrogen and helium left over from the Big Bang. Astronomers haven't been able to detect them yet, but a new simulation predicts that they might be extremely massive, with some reaching 100,000 times the mass of the Sun." (my bold)

https://www.universetoday.com/159800/the-first-stars-may-have-weighed-more-than-100000-...

"The universe was simply different when it was younger. Recently astronomers have discovered that complex physics in the young cosmos may have led to the development of supermassive stars, each one weighing up to 100,000 times the mass of the Sun.

"We currently have no observations of the formation of the first stars in the universe, which is thought to have taken place when our cosmos was only a few hundred million years old. To understand this important epoch, astronomers turn to sophisticated computer simulations to test out models of how the first stars formed.

"Over the years astronomers have wrestled with the key question of what is the typical size of the first stars. Some early estimates predicted that the first stars could be hundreds of times more massive than the Sun, while later simulation suggested that they would be more normally sized.

"Recently a team of researchers have put together a new round of simulations and come to a very surprising conclusion. Their simulations specifically looked at a phenomenon known as cold accretion. To build large stars you have to pull a lot of material into a very small volume very quickly. And you have to do it without raising the temperature of the material, because warmer material will prevent itself from collapsing. So you need some method of removing heat from material as it collapses very quickly.

"Earlier simulations had found the appearance of dense pockets within early galaxies that cool off rapidly from emitting radiation, but did not have the resolution needed to follow their further evolution. The new research takes it a step further by examining how the cold dense pockets that initially form in the early universe behave.

"This simulations revealed that large flows of cold, dense matter can strike an accretion disk at the center of giant clumps of matter. When that happens a shockwave forms. That shockwave rapidly destabilizes the gas and triggers the instant collapse of large pockets of matter.

"Those large pockets can be tens of thousands times more massive than the Sun, and in some cases even 100,000 times more massive than the Sun. With nothing to stop their collapse, they immediately form gigantic stars, known as supermassive stars.

"The astronomers do not yet know if supermassive stars formed in the early universe. They hope that future observations with the James Webb Space Telescope will reveal clues as to the formation of the first stars and galaxies and determine if these monsters appeared in the infant universe."

Comment: dhw raises negative opinions, as in the quote above, while admitting his science education is small. My role is to look for answers. The answer here is obvious. Stars go through generations of types as the early universe evolves into the present form. Our sun is third generation from about five billion years ago. It is a 'metallic' star containing the important metals we use today on Earth. We can say a very special Earth comes from a very special sun. I'll now repeat. Looks designed to me.


Complete thread:

 RSS Feed of thread

powered by my little forum