Brain complexity: synapse signal controls found (Introduction)

by David Turell @, Thursday, August 17, 2017, 18:23 (2655 days ago) @ David Turell

Neurons transmit to each other through synapses using glutamine and dopamine as chemical controls:

https://medicalxpress.com/news/2017-08-discovery-neuron

"Neurons communicate with one another by releasing chemicals called neurotransmitters, such as dopamine and glutamate, into the small space between two neurons that is known as a synapse. Inside neurons, neurotransmitters awaiting release are housed in small sacs called synaptic vesicles.

"'Our findings demonstrate, for the first time, that neurons can change how much dopamine they release as a function of their overall activity. When this mechanism doesn't work properly, it could lead to profound effects on health," explained the study's senior author Zachary Freyberg, M.D., Ph.D., who recently joined Pitt as an assistant professor of psychiatry and cell biology. Freyberg initiated the research while at Columbia University.

"When the researchers triggered the dopamine neurons to fire, the neurons' vesicles began to release dopamine as expected. But then the team noticed something surprising: additional content was loaded into the vesicles before they had the opportunity to empty. Subsequent experiments showed that this activity-induced vesicle loading was due to an increase in acidity levels inside the vesicles.

***

"The team then demonstrated that the increase in acidity was driven by a transport channel in the cell's surface, which allowed an influx of negatively charged glutamate ions to enter the neuron, thus increasing its acidity. Genetically removing the transporter in fruit flies and mice made the animals less responsive to amphetamine, a drug that exerts its effect by stimulating dopamine release from neurons.

"'In this case, glutamate is not acting as a neurotransmitter. Instead it is functioning primarily as a source of negative charge, which is being used by these vesicles in a really clever way to manipulate vesicle acidity and therefore change their dopamine content," Freyberg said. "This calls into question the whole textbook model of vesicles as having fixed amounts of single neurotransmitters. It appears that these vesicles contain both dopamine and glutamate, and dynamically modify their content to match the conditions of the cell as needed.'"

Comment: This is a typical biological setup, with balancing chemicals controlling the levels of signal, much like feedback loops, which may be eventually found here. This cannot develop by chance but must be developed by design all at once.


Complete thread:

 RSS Feed of thread

powered by my little forum