New brain complexity: relational thinking (Introduction)

by David Turell @, Tuesday, December 09, 2014, 00:32 (3638 days ago) @ David Turell

Compared to monkeys we have much more complex ways to handle problems, relating several unrelated facts at the same time. We are different in kind:-http://www.sciencedaily.com/releases/2014/12/141203142636.htm-"Given the supporting evidence across species, we posit that connections between these frontal and parietal regions have provided the necessary support for our unique ability to reason using abstract relations," said Michael Vendetti, co-author of the study and a postdoctoral researcher in neuroscience at UC Berkeley.-"Relational reasoning is a high-level cognitive process in which we make comparisons and find equivalencies, as one does in algebra, for example. First-order comparisons identify the relationship between two items or activities in the following ways: semantic (hammer is used to hit a nail); numeric (four is greater than two); temporal (we get out of bed before we go to work) or visuospatial (the bird is on top of the house). Second-order or higher-order comparisons take this a step further by equating two or more sets of first-order relations (a chain is to a link as a bouquet is to a flower).-"To test their hypothesis that the human gift for relational reasoning can be traced to developmental and evolutionary changes in the brain's lateral frontoparietal network, the researchers examined studies that track anatomical changes in the developing human brain; compare neural patterns in human and non-human primates, and compare how human and non-human primates tackle various reasoning tasks.-"Their exhaustive meta-analysis identified three parts of the brain that play key roles in relational reasoning, the rostrolateral prefrontal cortex, the dorsolateral prefrontal cortex and the inferior parietal lobule, with the rostrolateral region more actively engaged in second-order relational reasoning.-"In looking at brain development, they found that "synaptic pruning," which usually takes place in adolescence when white matter replaces gray matter and signals between neurons speed up, was more evident in the inferior parietal regions of the brain.-"Also crucial to their finding was a study led by Oxford University neuroscientist Matthew Rushworth that compared neural patterns in humans and macaque monkeys. While human and non-human primates were found to share similarities in the frontal and parietal brain regions, activity in the human rostrolateral prefrontal cortex differed significantly from that of the macaque monkey's frontal cortex, the study found."


Complete thread:

 RSS Feed of thread

powered by my little forum