Brain complexity: seasonal circadian rhythm (Introduction)

by David Turell @, Tuesday, June 30, 2015, 02:06 (3435 days ago) @ Balance_Maintained

The area in the brain that is aware of seasonal changes has been found, working through specific genes and chlorine concentrations:-
http://medicalxpress.com/news/2015-06-brain-summer.html-"Seasonal time keeping is important for animals as well as people, and recent studies indicate that it is accomplished by the same part of the brain that governs our daily circadian rhythms. This brain area, called the suprachiasmatic nucleus (SCN), cyclically expresses certain "clock" genes during a 24-hour period, but not all of the neurons march to the same beat. Two regions in the SCN are slightly out of phase, and as day length increases, so does the phase gap between them.-"To understand how this happens, the researchers first measured expression levels of the clock gene Bmal1 in explanted dorsal and ventral SCNs of mice that had been living in long-day or short-day light cycles. As expected, cyclical Bmal1 levels in dorsal and ventral regions from the long-day group were out of phase, while those from the short-day group were synchronized. Modeling analysis predicted that coupling between the two regions is not a two-way street, and that this asymmetry causes the dorsal region to become out of phase when daylight increases.-"The research team found that the neurotransmitter GABA plays an important role in this process. In most cases, GABA inhibits the activity of neurons. However, some SCN neurons are actually excited by GABA. Lead author Jihwan Myung explains, "GABA becomes excitatory when chloride levels inside neurons are high. We suspected that changes in GABA function across the SCN could represent the repulsive force that pushes these two clusters of neurons out of phase.-***-"To test this hypothesis, they measured expression levels of two other genes—Nkcc1 and Kcc2—that are responsible for importing and exporting chloride. They found that in long-day SCNs, the expression ratio of the two genes in the dorsal SCN changed so that much more chloride was imported. This made the effect of GABA preferentially excitatory in the dorsal region. Blocking chloride import abolished the phase gap seen in the long-day group, and as predicted by the model, even made SCNs trained on an even 12-hour daylight cycle resemble the short-day group."-Comment: The suprachiasmatic nucleus is just above the optic chiasm, the crossing of the two optic nerves. This tells me light sensitivity is part of the process, as days are longer or shorter depending, except at the Equator. As an example to keep the hair off our show horses, they stay under light 18 hours a day, always mimicking summer.


Complete thread:

 RSS Feed of thread

powered by my little forum