Biochemical controls: expanding bacterial walls (Introduction)
Crack open and fill up:
https://phys.org/news/2023-07-achilles-heel-bacterial-cell-wall.html
"The bacterial cell wall must be constantly remodeled in order to grow and divide. This involves the close coordination of lytic enzymes and peptidoglycan synthesis. In their study published in Nature Communications, researchers led by Martin Thanbichler have now found that a central regulator can control completely different classes of autolysins.
***
"Most bacterial species synthesize a semi-rigid cell wall surrounding the cytoplasmic membrane, whose main component, peptidoglycan, forms a dense meshwork that encases the cell. In addition to its protective role, the cell wall also serves as a means to generate specific cell shapes, such as spheres, rods, or spirals, thus facilitating motility, surface colonization, and pathogenicity.
"The presence of a cell wall presents its own challenges: cells must constantly remodel it in order to grow and divide. To do this, they must very carefully make tears in the wall to allow it to expand and change, while quickly mending the gaps with new material to prevent it from collapsing.
"This cell wall remodeling process involves the cleavage of bonds by lytic enzymes, also known as autolysins, and the subsequent insertion of new cell wall material by peptidoglycan synthases. The activities of these two antagonistic groups of proteins must be closely coordinated to prevent weak spots in the peptidoglycan layer that lead to cell lysis and death.
***
"Analysis of potential autolysin regulators by co-immunoprecipitation screening and in vitro protein-protein interaction assays has revealed that a factor called DipM plays a pivotal role in bacterial cell wall remodeling. This key regulator, a soluble periplasmic protein, surprisingly interacts with several classes of autolysins as well as a cell division factor, showing a promiscuity that was previously unknown for this type of regulator.
"DipM was able to stimulate the activity of two peptidoglycan-cleaving enzymes with completely different activities and folding, making it the first identified regulator that can control two classes of autolysins. Notably, the results also indicate that DipM uses a single interface to interact with its various targets.
"'Disruption of DipM leads to the loss of regulation at various points of the cell wall remodeling and division process and ultimately kills the cell," says doctoral student Adrian Izquierdo Martinez, first author of the study. "Its proper function as a coordinator of autolysin activity is thus critical for proper cell shape maintenance and cell division in C. crescentus."
"The comprehensive characterization of DipM revealed a novel interaction network, including a self-reinforcing loop that connects lytic transglycosylases and possibly other autolysins to the core of the cell division apparatus of C. crescentus, and very likely also other bacteria. Thus, DipM coordinates a complex autolysin network whose topology greatly differs from that of previously studied autolysin systems.
"Martin Thanbichler points out, "The study of such multi-enzyme regulators, whose malfunction affects several cell wall-related processes at the same time, not only helps us to understand how the cell wall responds to changes in the cell or the environment. It can also contribute to the development of new therapeutic strategies that combat bacteria by disrupting several autolytic pathways simultaneously.' "
Comment: the earliest bacterial forms had to have had this mechanism to expand its cell wall and divide or the species would not have reproduced and survive. This degree of complexity is ancient and must have been designed when the first bacteria were formed.
Complete thread:
- Biochemical controls: the kidney -
David Turell,
2022-04-25, 20:47
- Biochemical controls: how enzymes work - David Turell, 2022-04-25, 21:08
- Biochemical controls: the kidney pumps blood -
David Turell,
2022-05-18, 15:24
- Biochemical controls: controlling cell protein output -
David Turell,
2022-05-31, 19:20
- Biochemical controls: intracellular electrical controls -
David Turell,
2022-09-10, 15:54
- Biochemical controls: reading DNA - David Turell, 2022-09-10, 16:16
- Biochemical controls: an enzyme controls growth -
David Turell,
2022-10-31, 17:10
- Biochemical controls: dumping cell waste - David Turell, 2022-10-31, 18:25
- Biochemical controls: protein folding follows rules -
David Turell,
2022-10-31, 22:06
- Biochemical controls: enzyme controls repair - David Turell, 2022-12-02, 00:20
- Biochemical controls: evolution of protein folding -
David Turell,
2023-03-07, 19:27
- Biochemical controls: cell division DNA replication - David Turell, 2023-05-31, 17:43
- Biochemical controls: specialized retinal ganglion cells -
David Turell,
2023-01-29, 17:10
- Biochemical controls: potassium regulation -
David Turell,
2023-01-30, 23:58
- Biochemical controls: photosynthesis in algae -
David Turell,
2023-02-01, 16:03
- Biochemical controls: photosynthesis in phytoplankton -
David Turell,
2023-06-02, 19:13
- Biochemical controls: controls of cell death (apoptosis) - David Turell, 2023-06-02, 21:04
- Biochemical controls: photosynthesis from one photon -
David Turell,
2023-06-14, 17:26
- Biochemical controls: photosynthesis from one photon -
David Turell,
2023-07-03, 22:49
- Biochemical controls: photosynthesis from one photon -
David Turell,
2023-07-05, 16:10
- Biochemical controls: plant root growth factors -
David Turell,
2023-07-08, 18:23
- Biochemical controls: immune memory - David Turell, 2023-07-12, 20:30
- Biochemical controls:photosynthesis roughly 100% efficient -
David Turell,
2023-07-16, 00:58
- Biochemical controls: oxygen without photosynthesis -
David Turell,
2023-07-17, 16:52
- Biochemical controls: expanding bacterial walls -
David Turell,
2023-07-20, 17:43
- Biochemical controls: parasites control hosts -
David Turell,
2023-07-20, 18:05
- Biochemical controls: making insulin -
David Turell,
2023-07-25, 18:02
- Biochemical controls: molecular movements -
David Turell,
2023-08-10, 18:52
- Biochemical controls: FUBI's role -
David Turell,
2023-08-12, 00:19
- Biochemical controls: plant controls for gravity -
David Turell,
2023-08-13, 23:08
- Biochemical controls: cell division atomic level -
David Turell,
2023-08-14, 17:40
- Biochemical controls: nucleolus formation -
David Turell,
2023-08-15, 17:10
- Biochemical controls: molecular language -
David Turell,
2023-08-17, 17:19
- Biochemical controls: gut stem cell development - David Turell, 2023-08-19, 16:15
- Biochemical controls: building cilia -
David Turell,
2023-08-25, 20:33
- Biochemical controls: cell control of mRNA -
David Turell,
2023-08-25, 20:42
- Biochemical controls: treadmilling for cell division -
David Turell,
2023-08-25, 20:54
- Biochemical controls: garbage disposal -
David Turell,
2023-08-26, 20:33
- Biochemical controls: cells form cilia -
David Turell,
2023-08-27, 18:00
- Biochemical controls: intercellular transport -
David Turell,
2023-09-01, 20:50
- Biochemical controls: intracellular garbage removal -
David Turell,
2023-09-27, 18:28
- Biochemical controls: appetite controls -
David Turell,
2023-10-02, 18:15
- Biochemical controls: strange strings on proteins function - David Turell, 2023-10-02, 23:08
- Biochemical controls: appetite controls -
David Turell,
2023-10-02, 18:15
- Biochemical controls: intracellular garbage removal -
David Turell,
2023-09-27, 18:28
- Biochemical controls: intercellular transport -
David Turell,
2023-09-01, 20:50
- Biochemical controls: cells form cilia -
David Turell,
2023-08-27, 18:00
- Biochemical controls: new cell division discovery -
David Turell,
2023-10-07, 19:06
- Biochemical controls: new cell division discovery -
GateKeeper,
2023-10-08, 00:24
- Biochemical controls: new cell division discovery -
dhw,
2023-10-08, 11:47
- Biochemical controls: new cell division discovery -
David Turell,
2023-10-08, 16:45
- Biochemical controls: mitochondrial metabolism control -
David Turell,
2023-10-09, 18:04
- Biochemical controls: circadian clock proteins -
David Turell,
2023-10-10, 19:39
- Biochemical controls: circadian clock proteins - David Turell, 2023-10-18, 20:16
- Biochemical controls: circadian clock proteins -
David Turell,
2023-10-10, 19:39
- Biochemical controls: mitochondrial metabolism control -
David Turell,
2023-10-09, 18:04
- Biochemical controls: new cell division discovery -
David Turell,
2023-10-08, 16:45
- Biochemical controls: new cell division discovery -
David Turell,
2023-10-08, 16:06
- Biochemical controls: making operational synapses -
David Turell,
2023-10-12, 21:35
- Biochemical controls: handling stress -
David Turell,
2023-10-16, 18:59
- Biophysical controls -
David Turell,
2023-10-25, 21:36
- Biophysical controls: motors looping DNA -
David Turell,
2023-11-10, 15:54
- Biochemical controls: how mitochondria protect themselves -
David Turell,
2023-11-10, 19:09
- Biochemical controls: how T cells fight cancer -
David Turell,
2023-11-11, 16:55
- Biochemical controls: how MAIT T cells work - David Turell, 2023-11-11, 17:48
- Biochemical controls: ion gate controls -
David Turell,
2023-11-13, 21:03
- Biochemical controls: condensate formation in cells -
David Turell,
2023-11-13, 22:00
- Biochemical controls: reading DNA -
David Turell,
2023-11-24, 22:19
- Biochemical controls: enzymes control insulin level -
David Turell,
2023-12-06, 14:59
- Biochemical controls: enormous number of molecular reactions -
David Turell,
2023-12-11, 19:55
- Biochemical controls: intracellular reactions -
David Turell,
2023-12-21, 20:16
- Biochemical controls: intracellular reactions II - David Turell, 2023-12-21, 20:38
- Biochemical controls: two forms of Actin act differently -
David Turell,
2023-12-22, 19:41
- Biochemical controls: tRNA actions - David Turell, 2023-12-30, 16:02
- Biochemical controls: two forms of actin -
David Turell,
2024-01-01, 18:36
- Biochemical controls: cellular health controls -
David Turell,
2024-01-06, 20:05
- Biochemical controls: cell adhesion controls -
David Turell,
2024-01-08, 17:17
- Biochemical controls: how age is controlled -
David Turell,
2024-01-08, 17:35
- Biochemical controls: mitochondrial vast activities -
David Turell,
2024-01-08, 19:04
- Biochemical controls: cellular molecular decision making -
David Turell,
2024-01-18, 18:59
- Biochemical controls: intercellular communication -
David Turell,
2024-01-19, 19:10
- Biochemical controls: mitochondrial energy output -
David Turell,
2024-01-21, 20:02
- Biochemical controls: managing allergy -
David Turell,
2024-02-08, 20:34
- Biochemical controls: not in the genes!: -
David Turell,
2024-02-28, 18:57
- Biochemical controls: how algae fix CO2 -
David Turell,
2024-03-04, 18:42
- Biochemical controls: why apoptosis? -
David Turell,
2024-03-06, 18:16
- Biochemical controls: controlling autoimmunity -
David Turell,
2024-03-20, 14:54
- Biochemical controls: controlling cardiac functions -
David Turell,
2024-03-28, 23:34
- Biochemical controls: controlling DNA in cell division -
David Turell,
2024-03-30, 22:01
- Biochemical controls: controlling DNA transcriptions -
David Turell,
2024-04-26, 15:56
- Biochemical controls: the role of the interstitium -
David Turell,
2024-04-26, 18:08
- Biochemical controls: the role of membrane ion fluxes -
David Turell,
2024-04-27, 01:04
- Biochemical controls: the role of B cells in cancer control -
David Turell,
2024-05-03, 18:35
- Biochemical controls: T cell controls -
David Turell,
2024-05-04, 20:58
- Biochemical controls: of cell division -
David Turell,
2024-05-05, 22:44
- Biochemical controls: protect a pregnancy -
David Turell,
2024-05-06, 17:47
- Biochemical controls: seed control of 'up' and 'down' -
David Turell,
2024-05-16, 18:29
- Biochemical controls: alternate cellular waste disposal -
David Turell,
2024-06-12, 17:41
- Biochemical controls: proper delivery of proteins -
David Turell,
2024-06-25, 19:43
- Biochemical controls: T cell receptors control gut immunity -
David Turell,
2024-07-05, 16:40
- Biochemical controls: deeper look at cell division - David Turell, 2024-07-06, 18:06
- Biochemical controls: T cell receptors control gut immunity -
David Turell,
2024-07-05, 16:40
- Biochemical controls: proper delivery of proteins -
David Turell,
2024-06-25, 19:43
- Biochemical controls: alternate cellular waste disposal -
David Turell,
2024-06-12, 17:41
- Biochemical controls: seed control of 'up' and 'down' -
David Turell,
2024-05-16, 18:29
- Biochemical controls: protect a pregnancy -
David Turell,
2024-05-06, 17:47
- Biochemical controls: of cell division -
David Turell,
2024-05-05, 22:44
- Biochemical controls: T cell controls -
David Turell,
2024-05-04, 20:58
- Biochemical controls: the role of B cells in cancer control -
David Turell,
2024-05-03, 18:35
- Biochemical controls: the role of membrane ion fluxes -
David Turell,
2024-04-27, 01:04
- Biochemical controls: the role of the interstitium -
David Turell,
2024-04-26, 18:08
- Biochemical controls: controlling DNA transcriptions -
David Turell,
2024-04-26, 15:56
- Biochemical controls: controlling DNA in cell division -
David Turell,
2024-03-30, 22:01
- Biochemical controls: controlling cardiac functions -
David Turell,
2024-03-28, 23:34
- Biochemical controls: controlling autoimmunity -
David Turell,
2024-03-20, 14:54
- Biochemical controls: how phytoplankton's fix nitrogen -
David Turell,
2024-07-17, 19:42
- Biochemical controls: a protein guides cell division -
David Turell,
2024-07-20, 20:44
- Biochemical controls: rythymic gene expression in symbiosis -
David Turell,
2024-07-20, 21:11
- Biochemical controls: long-lived proteins in oocytes -
David Turell,
2024-07-21, 16:53
- Biochemical controls: plant controls genetic or not -
David Turell,
2024-08-02, 18:33
- Biochemical controls: plant controls over cell stress -
David Turell,
2024-08-09, 19:37
- Biochemical controls: symbiotic controls -
David Turell,
2024-08-09, 20:03
- Biochemical controls: over natural killer cells -
David Turell,
2024-08-12, 18:31
- Biochemical controls: plant immunity against viruses -
David Turell,
2024-08-13, 21:36
- Biochemical controls: mitochondrial self-repair -
David Turell,
2024-08-22, 00:10
- Biochemical controls: lipoprotein levels in pregnancy -
David Turell,
2024-08-22, 18:33
- Biochemical controls: providing T cell memories -
David Turell,
2024-08-25, 19:27
- Biochemical controls: a viral bacterial defense mechanism -
David Turell,
2024-08-27, 19:28
- Biochemical controls: histone role in cell functions -
David Turell,
2024-09-01, 16:28
- Biochemical controls: of synapse development - David Turell, 2024-09-02, 01:06
- Biochemical controls: butterfly wing colors -
David Turell,
2024-09-04, 17:32
- Biochemical controls: of specialized cell reproduction -
David Turell,
2024-09-06, 19:13
- Biochemical controls: protecting centromeres -
David Turell,
2024-09-07, 20:02
- Biochemical controls: editing DNA mistakes -
David Turell,
2024-09-08, 18:49
- Biochemical controls: surviving deep sea pressure -
David Turell,
2024-09-09, 20:16
- Biochemical controls: epigenetic gene controls -
David Turell,
2024-09-12, 18:26
- Biochemical controls: intracellular communication -
David Turell,
2024-09-16, 19:32
- Biochemical controls: cells on the edge of chaos -
David Turell,
2024-09-18, 18:42
- Biochemical controls: in embryo development -
David Turell,
2024-09-18, 20:16
- Biochemical controls: more on disordered proteins -
David Turell,
2024-09-21, 18:07
- Biochemical controls: in developing embryo -
David Turell,
2024-09-25, 20:26
- Biochemical controls: in the genome -
David Turell,
2024-09-27, 19:37
- Biochemical controls: an RNA controls cell death -
David Turell,
2024-10-02, 19:13
- Biochemical controls: how endosymbiosis starts -
David Turell,
2024-10-02, 23:06
- Biochemical controls: chaperones control proteins -
David Turell,
2024-10-08, 20:00
- Biochemical controls: -
David Turell,
2024-10-09, 18:33
- Biochemical controls: predicting seasonal change -
David Turell,
2024-10-12, 20:09
- Biochemical controls: how sperm and egg say hello -
David Turell,
2024-10-18, 18:21
- Biochemical controls: consuming dead cell garbage -
David Turell,
2024-10-19, 18:08
- Biochemical controls: checking on harmful invaders -
David Turell,
2024-10-22, 20:16
- Biochemical controls: guiding heart repair -
David Turell,
2024-10-27, 18:12
- Biochemical controls: very many in the gut -
David Turell,
2024-10-30, 17:05
- Biochemical controls: intrinsically disordered proteins -
David Turell,
2024-11-06, 16:49
- Biochemical controls: intrinsically disordered proteins -
dhw,
2024-11-07, 08:38
- Biochemical controls: intrinsically disordered proteins - David Turell, 2024-11-07, 15:13
- Biochemical controls: intrinsically disordered proteins -
dhw,
2024-11-07, 08:38
- Biochemical controls: intrinsically disordered proteins -
David Turell,
2024-11-06, 16:49
- Biochemical controls: very many in the gut -
David Turell,
2024-10-30, 17:05
- Biochemical controls: guiding heart repair -
David Turell,
2024-10-27, 18:12
- Biochemical controls: checking on harmful invaders -
David Turell,
2024-10-22, 20:16
- Biochemical controls: consuming dead cell garbage -
David Turell,
2024-10-19, 18:08
- Biochemical controls: how sperm and egg say hello -
David Turell,
2024-10-18, 18:21
- Biochemical controls: predicting seasonal change -
David Turell,
2024-10-12, 20:09
- Biochemical controls: -
David Turell,
2024-10-09, 18:33
- Biochemical controls: chaperones control proteins -
David Turell,
2024-10-08, 20:00
- Biochemical controls: how endosymbiosis starts -
David Turell,
2024-10-02, 23:06
- Biochemical controls: an RNA controls cell death -
David Turell,
2024-10-02, 19:13
- Biochemical controls: in the genome -
David Turell,
2024-09-27, 19:37
- Biochemical controls: in developing embryo -
David Turell,
2024-09-25, 20:26
- Biochemical controls: more on disordered proteins -
David Turell,
2024-09-21, 18:07
- Biochemical controls: in embryo development -
David Turell,
2024-09-18, 20:16
- Biochemical controls: cells on the edge of chaos -
David Turell,
2024-09-18, 18:42
- Biochemical controls: intracellular communication -
David Turell,
2024-09-16, 19:32
- Biochemical controls: epigenetic gene controls -
David Turell,
2024-09-12, 18:26
- Biochemical controls: surviving deep sea pressure -
David Turell,
2024-09-09, 20:16
- Biochemical controls: editing DNA mistakes -
David Turell,
2024-09-08, 18:49
- Biochemical controls: protecting centromeres -
David Turell,
2024-09-07, 20:02
- Biochemical controls: of specialized cell reproduction -
David Turell,
2024-09-06, 19:13
- Biochemical controls: histone role in cell functions -
David Turell,
2024-09-01, 16:28
- Biochemical controls: a viral bacterial defense mechanism -
David Turell,
2024-08-27, 19:28
- Biochemical controls: providing T cell memories -
David Turell,
2024-08-25, 19:27
- Biochemical controls: lipoprotein levels in pregnancy -
David Turell,
2024-08-22, 18:33
- Biochemical controls: mitochondrial self-repair -
David Turell,
2024-08-22, 00:10
- Biochemical controls: plant immunity against viruses -
David Turell,
2024-08-13, 21:36
- Biochemical controls: over natural killer cells -
David Turell,
2024-08-12, 18:31
- Biochemical controls: symbiotic controls -
David Turell,
2024-08-09, 20:03
- Biochemical controls: plant controls over cell stress -
David Turell,
2024-08-09, 19:37
- Biochemical controls: plant controls genetic or not -
David Turell,
2024-08-02, 18:33
- Biochemical controls: long-lived proteins in oocytes -
David Turell,
2024-07-21, 16:53
- Biochemical controls: rythymic gene expression in symbiosis -
David Turell,
2024-07-20, 21:11
- Biochemical controls: a protein guides cell division -
David Turell,
2024-07-20, 20:44
- Biochemical controls: why apoptosis? -
David Turell,
2024-03-06, 18:16
- Biochemical controls: how algae fix CO2 -
David Turell,
2024-03-04, 18:42
- Biochemical controls: not in the genes!: -
David Turell,
2024-02-28, 18:57
- Biochemical controls: managing allergy -
David Turell,
2024-02-08, 20:34
- Biochemical controls: mitochondrial energy output -
David Turell,
2024-01-21, 20:02
- Biochemical controls: intercellular communication -
David Turell,
2024-01-19, 19:10
- Biochemical controls: cellular molecular decision making -
David Turell,
2024-01-18, 18:59
- Biochemical controls: mitochondrial vast activities -
David Turell,
2024-01-08, 19:04
- Biochemical controls: how age is controlled -
David Turell,
2024-01-08, 17:35
- Biochemical controls: cell adhesion controls -
David Turell,
2024-01-08, 17:17
- Biochemical controls: cellular health controls -
David Turell,
2024-01-06, 20:05
- Biochemical controls: intracellular reactions -
David Turell,
2023-12-21, 20:16
- Biochemical controls: enormous number of molecular reactions -
David Turell,
2023-12-11, 19:55
- Biochemical controls: enzymes control insulin level -
David Turell,
2023-12-06, 14:59
- Biochemical controls: reading DNA -
David Turell,
2023-11-24, 22:19
- Biochemical controls: condensate formation in cells -
David Turell,
2023-11-13, 22:00
- Biochemical controls: how T cells fight cancer -
David Turell,
2023-11-11, 16:55
- Biochemical controls: how mitochondria protect themselves -
David Turell,
2023-11-10, 19:09
- Biophysical controls: motors looping DNA -
David Turell,
2023-11-10, 15:54
- Biophysical controls -
David Turell,
2023-10-25, 21:36
- Biochemical controls: handling stress -
David Turell,
2023-10-16, 18:59
- Biochemical controls: making operational synapses -
David Turell,
2023-10-12, 21:35
- Biochemical controls: new cell division discovery -
dhw,
2023-10-08, 11:47
- Biochemical controls: new cell division discovery -
GateKeeper,
2023-10-08, 00:24
- Biochemical controls: garbage disposal -
David Turell,
2023-08-26, 20:33
- Biochemical controls: treadmilling for cell division -
David Turell,
2023-08-25, 20:54
- Biochemical controls: cell control of mRNA -
David Turell,
2023-08-25, 20:42
- Biochemical controls: molecular language -
David Turell,
2023-08-17, 17:19
- Biochemical controls: nucleolus formation -
David Turell,
2023-08-15, 17:10
- Biochemical controls: cell division atomic level -
David Turell,
2023-08-14, 17:40
- Biochemical controls: plant controls for gravity -
David Turell,
2023-08-13, 23:08
- Biochemical controls: FUBI's role -
David Turell,
2023-08-12, 00:19
- Biochemical controls: molecular movements -
David Turell,
2023-08-10, 18:52
- Biochemical controls: parasites control hosts - David Turell, 2024-05-02, 21:00
- Biochemical controls: making insulin -
David Turell,
2023-07-25, 18:02
- Biochemical controls: parasites control hosts -
David Turell,
2023-07-20, 18:05
- Biochemical controls: expanding bacterial walls -
David Turell,
2023-07-20, 17:43
- Biochemical controls: oxygen without photosynthesis -
David Turell,
2023-07-17, 16:52
- Biochemical controls: plant root growth factors -
David Turell,
2023-07-08, 18:23
- Biochemical controls: intracellular quantum actions - David Turell, 2023-09-09, 21:25
- Biochemical controls: photosynthesis from one photon -
David Turell,
2023-07-05, 16:10
- Biochemical controls: photosynthesis from one photon -
David Turell,
2023-07-03, 22:49
- Biochemical controls: photosynthesis in phytoplankton -
David Turell,
2023-06-02, 19:13
- Biochemical controls: photosynthesis in algae -
David Turell,
2023-02-01, 16:03
- Biochemical controls: potassium regulation -
David Turell,
2023-01-30, 23:58
- Biochemical controls: how RNA is supplied and delivered - David Turell, 2023-03-06, 19:09
- Biochemical controls: sight from initial molecule's actions -
David Turell,
2023-03-22, 20:26
- Biochemical controls: specialized retinal synapses -
David Turell,
2023-06-19, 15:56
- Biochemical controls: cell conversion controls -
David Turell,
2023-06-29, 17:19
- Biochemical controls: cell life or death controls - David Turell, 2023-06-30, 15:13
- Biochemical controls: cell conversion controls -
David Turell,
2023-06-29, 17:19
- Biochemical controls: specialized retinal synapses -
David Turell,
2023-06-19, 15:56
- Biochemical controls: intracellular electrical controls -
David Turell,
2022-09-10, 15:54
- Biochemical controls: controlling cell protein output -
David Turell,
2022-05-31, 19:20
- Biochemical controls: plant wound signals - David Turell, 2022-10-22, 16:57