Biochemical controls: protein folding follows rules (Introduction)
As shown by an AI program:
https://www.scientificamerican.com/article/one-of-the-biggest-problems-in-biology-has-f...
"There’s an age-old adage in biology: structure determines function. In order to understand the function of the myriad proteins that perform vital jobs in a healthy body—or malfunction in a diseased one—scientists have to first determine these proteins’ molecular structure. But this is no easy feat: protein molecules consist of long, twisty chains of up to thousands of amino acids, chemical compounds that can interact with one another in many ways to take on an enormous number of possible three-dimensional shapes. Figuring out a single protein’s structure, or solving the “protein-folding problem, can take years of finicky experiments.
"But earlier this year an artificial intelligence program called AlphaFold developed by the Google-owned company DeepMind, predicted the 3-D structures of almost every known protein—about 200 million in all.
***
"There are 32 different component algorithms, and each of them is needed. It’s a pretty complicated architecture, and it needed a lot of innovation. That’s why it took so long. It was really important to have all these different inputs from different backgrounds and disciplines. And I think something we do uniquely well at DeepMind is mix that together—not just machine learning and engineering.
***
"One of the things we built in was this understanding of chemical bond angles and also evolutionary history using a process called multisequence alignment. These bring in some constraints, which help to narrow the search space of possible protein structures. The search space is too huge to do by brute force. But obviously, real-world physics solves this somehow because proteins fold up in nanoseconds or milliseconds. Effectively, we’re trying to reverse engineer that process by learning from the output examples. I think AlphaFold has captured something quite deep about the physics and the chemistry of molecules."
Comment: the underlying principle is every atom has a charge which dictates its contribution
to the folding by the attraction of the different charges. The AI program understand this. So, in thinking about design folding is not much of a design problem. It is the sequence of atoms in the protein that is required to be designed with an anticipated understanding of the desired protein function to be expressed. Not by chance.
Complete thread:
- Biochemical controls: the kidney -
David Turell,
2022-04-25, 20:47
- Biochemical controls: how enzymes work - David Turell, 2022-04-25, 21:08
- Biochemical controls: the kidney pumps blood -
David Turell,
2022-05-18, 15:24
- Biochemical controls: controlling cell protein output -
David Turell,
2022-05-31, 19:20
- Biochemical controls: intracellular electrical controls -
David Turell,
2022-09-10, 15:54
- Biochemical controls: reading DNA - David Turell, 2022-09-10, 16:16
- Biochemical controls: an enzyme controls growth -
David Turell,
2022-10-31, 17:10
- Biochemical controls: dumping cell waste - David Turell, 2022-10-31, 18:25
- Biochemical controls: protein folding follows rules -
David Turell,
2022-10-31, 22:06
- Biochemical controls: enzyme controls repair - David Turell, 2022-12-02, 00:20
- Biochemical controls: evolution of protein folding -
David Turell,
2023-03-07, 19:27
- Biochemical controls: cell division DNA replication - David Turell, 2023-05-31, 17:43
- Biochemical controls: specialized retinal ganglion cells -
David Turell,
2023-01-29, 17:10
- Biochemical controls: potassium regulation -
David Turell,
2023-01-30, 23:58
- Biochemical controls: photosynthesis in algae -
David Turell,
2023-02-01, 16:03
- Biochemical controls: photosynthesis in phytoplankton -
David Turell,
2023-06-02, 19:13
- Biochemical controls: controls of cell death (apoptosis) - David Turell, 2023-06-02, 21:04
- Biochemical controls: photosynthesis from one photon -
David Turell,
2023-06-14, 17:26
- Biochemical controls: photosynthesis from one photon -
David Turell,
2023-07-03, 22:49
- Biochemical controls: photosynthesis from one photon -
David Turell,
2023-07-05, 16:10
- Biochemical controls: plant root growth factors -
David Turell,
2023-07-08, 18:23
- Biochemical controls: immune memory - David Turell, 2023-07-12, 20:30
- Biochemical controls:photosynthesis roughly 100% efficient -
David Turell,
2023-07-16, 00:58
- Biochemical controls: oxygen without photosynthesis -
David Turell,
2023-07-17, 16:52
- Biochemical controls: expanding bacterial walls -
David Turell,
2023-07-20, 17:43
- Biochemical controls: parasites control hosts -
David Turell,
2023-07-20, 18:05
- Biochemical controls: making insulin -
David Turell,
2023-07-25, 18:02
- Biochemical controls: molecular movements -
David Turell,
2023-08-10, 18:52
- Biochemical controls: FUBI's role -
David Turell,
2023-08-12, 00:19
- Biochemical controls: plant controls for gravity -
David Turell,
2023-08-13, 23:08
- Biochemical controls: cell division atomic level -
David Turell,
2023-08-14, 17:40
- Biochemical controls: nucleolus formation -
David Turell,
2023-08-15, 17:10
- Biochemical controls: molecular language -
David Turell,
2023-08-17, 17:19
- Biochemical controls: gut stem cell development - David Turell, 2023-08-19, 16:15
- Biochemical controls: building cilia -
David Turell,
2023-08-25, 20:33
- Biochemical controls: cell control of mRNA -
David Turell,
2023-08-25, 20:42
- Biochemical controls: treadmilling for cell division -
David Turell,
2023-08-25, 20:54
- Biochemical controls: garbage disposal -
David Turell,
2023-08-26, 20:33
- Biochemical controls: cells form cilia -
David Turell,
2023-08-27, 18:00
- Biochemical controls: intercellular transport -
David Turell,
2023-09-01, 20:50
- Biochemical controls: intracellular garbage removal -
David Turell,
2023-09-27, 18:28
- Biochemical controls: appetite controls -
David Turell,
2023-10-02, 18:15
- Biochemical controls: strange strings on proteins function - David Turell, 2023-10-02, 23:08
- Biochemical controls: appetite controls -
David Turell,
2023-10-02, 18:15
- Biochemical controls: intracellular garbage removal -
David Turell,
2023-09-27, 18:28
- Biochemical controls: intercellular transport -
David Turell,
2023-09-01, 20:50
- Biochemical controls: cells form cilia -
David Turell,
2023-08-27, 18:00
- Biochemical controls: garbage disposal -
David Turell,
2023-08-26, 20:33
- Biochemical controls: treadmilling for cell division -
David Turell,
2023-08-25, 20:54
- Biochemical controls: cell control of mRNA -
David Turell,
2023-08-25, 20:42
- Biochemical controls: molecular language -
David Turell,
2023-08-17, 17:19
- Biochemical controls: nucleolus formation -
David Turell,
2023-08-15, 17:10
- Biochemical controls: cell division atomic level -
David Turell,
2023-08-14, 17:40
- Biochemical controls: plant controls for gravity -
David Turell,
2023-08-13, 23:08
- Biochemical controls: FUBI's role -
David Turell,
2023-08-12, 00:19
- Biochemical controls: molecular movements -
David Turell,
2023-08-10, 18:52
- Biochemical controls: making insulin -
David Turell,
2023-07-25, 18:02
- Biochemical controls: parasites control hosts -
David Turell,
2023-07-20, 18:05
- Biochemical controls: expanding bacterial walls -
David Turell,
2023-07-20, 17:43
- Biochemical controls: oxygen without photosynthesis -
David Turell,
2023-07-17, 16:52
- Biochemical controls: plant root growth factors -
David Turell,
2023-07-08, 18:23
- Biochemical controls: intracellular quantum actions - David Turell, 2023-09-09, 21:25
- Biochemical controls: photosynthesis from one photon -
David Turell,
2023-07-05, 16:10
- Biochemical controls: photosynthesis from one photon -
David Turell,
2023-07-03, 22:49
- Biochemical controls: photosynthesis in phytoplankton -
David Turell,
2023-06-02, 19:13
- Biochemical controls: photosynthesis in algae -
David Turell,
2023-02-01, 16:03
- Biochemical controls: potassium regulation -
David Turell,
2023-01-30, 23:58
- Biochemical controls: how RNA is supplied and delivered - David Turell, 2023-03-06, 19:09
- Biochemical controls: sight from initial molecule's actions -
David Turell,
2023-03-22, 20:26
- Biochemical controls: specialized retinal synapses -
David Turell,
2023-06-19, 15:56
- Biochemical controls: cell conversion controls -
David Turell,
2023-06-29, 17:19
- Biochemical controls: cell life or death controls - David Turell, 2023-06-30, 15:13
- Biochemical controls: cell conversion controls -
David Turell,
2023-06-29, 17:19
- Biochemical controls: specialized retinal synapses -
David Turell,
2023-06-19, 15:56
- Biochemical controls: intracellular electrical controls -
David Turell,
2022-09-10, 15:54
- Biochemical controls: controlling cell protein output -
David Turell,
2022-05-31, 19:20
- Biochemical controls: plant wound signals - David Turell, 2022-10-22, 16:57