Biochemical controls: evolution of protein folding (Introduction)
A new investigation:
https://phys.org/news/2023-03-creative-destruction-probing-evolution-proteins.html
"Proteins have been around a lot longer than we have—as building blocks of biological evolution, our existence depends on them. And now, researchers at the Georgia Institute of Technology are applying a 20th-century theoretical concept to study how proteins evolve, and it might lead to the answer of one of humanity's oldest questions: How did we become us?
"Inside a typical human cell are tens of thousands of proteins. We need so many because proteins are the skilled laborers of the cell with each one performing a specific job. Some lend firmness to muscle cells or neurons. Others bind to specific, targeted molecules, ferrying them to new locations. And there are others that activate the process of cell division and growth.
"A protein's specific function depends on its shape, and to achieve its functional shape—it's native state—a protein folds. A protein begins its life as a long chain of amino acids, called a polypeptide. The sequence of amino acids determines how the protein chain will fold and form a complex, 3D structure that allow the protein to perform an intended task.
***
"'"They discovered that once a protein can fold and achieve its 3D structure, when it is combined with another protein which has folded into a different 3D structure, that combination can easily become a new structure. "So maybe it's not as difficult as we thought to go from one structure to another," said Williams, professor in the School of Chemistry and Biochemistry. "And maybe this can explain the diversity of protein structures that we see today."
***
"Ever since the simplest and most ancient protein folds emerged on Earth billions of years ago, the number of folds has expanded to form the universe of protein function we see in modern biology.
"But the origins of protein folds and the evolutionary mechanisms at play pose central questions in biology that Williams and his team considered. For instance, how did protein folds arise, and what led to the diverse set of protein folds in contemporary biological systems, and why did nearly four billion years of fold evolution produce fewer than 2,000 distinct folds?
***
"In creative destruction, they explain, one open reading frame—the span of DNA sequence that encodes a protein —merges with another to produce a fused polypeptide. The merger forces these two ancestors into a new structure. The resulting polypeptide can achieve a form that was inaccessible to either of the independent ancestors, before the merger. But these new folds are not totally independent of the old. That is, a daughter fold inherits some things from the ancestral fold."
Comment: Some folding is automatic based on ion charges, but the overall controls are still a mystery. Design is required.
Complete thread:
- Biochemical controls: the kidney -
David Turell,
2022-04-25, 20:47
- Biochemical controls: how enzymes work - David Turell, 2022-04-25, 21:08
- Biochemical controls: the kidney pumps blood -
David Turell,
2022-05-18, 15:24
- Biochemical controls: controlling cell protein output -
David Turell,
2022-05-31, 19:20
- Biochemical controls: intracellular electrical controls -
David Turell,
2022-09-10, 15:54
- Biochemical controls: reading DNA - David Turell, 2022-09-10, 16:16
- Biochemical controls: an enzyme controls growth -
David Turell,
2022-10-31, 17:10
- Biochemical controls: dumping cell waste - David Turell, 2022-10-31, 18:25
- Biochemical controls: protein folding follows rules -
David Turell,
2022-10-31, 22:06
- Biochemical controls: enzyme controls repair - David Turell, 2022-12-02, 00:20
- Biochemical controls: evolution of protein folding -
David Turell,
2023-03-07, 19:27
- Biochemical controls: cell division DNA replication - David Turell, 2023-05-31, 17:43
- Biochemical controls: specialized retinal ganglion cells -
David Turell,
2023-01-29, 17:10
- Biochemical controls: potassium regulation -
David Turell,
2023-01-30, 23:58
- Biochemical controls: photosynthesis in algae -
David Turell,
2023-02-01, 16:03
- Biochemical controls: photosynthesis in phytoplankton -
David Turell,
2023-06-02, 19:13
- Biochemical controls: controls of cell death (apoptosis) - David Turell, 2023-06-02, 21:04
- Biochemical controls: photosynthesis from one photon -
David Turell,
2023-06-14, 17:26
- Biochemical controls: photosynthesis from one photon -
David Turell,
2023-07-03, 22:49
- Biochemical controls: photosynthesis from one photon -
David Turell,
2023-07-05, 16:10
- Biochemical controls: plant root growth factors -
David Turell,
2023-07-08, 18:23
- Biochemical controls: immune memory - David Turell, 2023-07-12, 20:30
- Biochemical controls:photosynthesis roughly 100% efficient -
David Turell,
2023-07-16, 00:58
- Biochemical controls: oxygen without photosynthesis -
David Turell,
2023-07-17, 16:52
- Biochemical controls: expanding bacterial walls -
David Turell,
2023-07-20, 17:43
- Biochemical controls: parasites control hosts -
David Turell,
2023-07-20, 18:05
- Biochemical controls: making insulin -
David Turell,
2023-07-25, 18:02
- Biochemical controls: molecular movements -
David Turell,
2023-08-10, 18:52
- Biochemical controls: FUBI's role -
David Turell,
2023-08-12, 00:19
- Biochemical controls: plant controls for gravity -
David Turell,
2023-08-13, 23:08
- Biochemical controls: cell division atomic level -
David Turell,
2023-08-14, 17:40
- Biochemical controls: nucleolus formation -
David Turell,
2023-08-15, 17:10
- Biochemical controls: molecular language -
David Turell,
2023-08-17, 17:19
- Biochemical controls: gut stem cell development - David Turell, 2023-08-19, 16:15
- Biochemical controls: building cilia -
David Turell,
2023-08-25, 20:33
- Biochemical controls: cell control of mRNA -
David Turell,
2023-08-25, 20:42
- Biochemical controls: treadmilling for cell division -
David Turell,
2023-08-25, 20:54
- Biochemical controls: garbage disposal -
David Turell,
2023-08-26, 20:33
- Biochemical controls: cells form cilia -
David Turell,
2023-08-27, 18:00
- Biochemical controls: intercellular transport -
David Turell,
2023-09-01, 20:50
- Biochemical controls: intracellular garbage removal -
David Turell,
2023-09-27, 18:28
- Biochemical controls: appetite controls -
David Turell,
2023-10-02, 18:15
- Biochemical controls: strange strings on proteins function - David Turell, 2023-10-02, 23:08
- Biochemical controls: appetite controls -
David Turell,
2023-10-02, 18:15
- Biochemical controls: intracellular garbage removal -
David Turell,
2023-09-27, 18:28
- Biochemical controls: intercellular transport -
David Turell,
2023-09-01, 20:50
- Biochemical controls: cells form cilia -
David Turell,
2023-08-27, 18:00
- Biochemical controls: new cell division discovery -
David Turell,
2023-10-07, 19:06
- Biochemical controls: new cell division discovery -
GateKeeper,
2023-10-08, 00:24
- Biochemical controls: new cell division discovery -
dhw,
2023-10-08, 11:47
- Biochemical controls: new cell division discovery -
David Turell,
2023-10-08, 16:45
- Biochemical controls: mitochondrial metabolism control -
David Turell,
2023-10-09, 18:04
- Biochemical controls: circadian clock proteins -
David Turell,
2023-10-10, 19:39
- Biochemical controls: circadian clock proteins - David Turell, 2023-10-18, 20:16
- Biochemical controls: circadian clock proteins -
David Turell,
2023-10-10, 19:39
- Biochemical controls: mitochondrial metabolism control -
David Turell,
2023-10-09, 18:04
- Biochemical controls: new cell division discovery -
David Turell,
2023-10-08, 16:45
- Biochemical controls: new cell division discovery -
David Turell,
2023-10-08, 16:06
- Biochemical controls: making operational synapses -
David Turell,
2023-10-12, 21:35
- Biochemical controls: handling stress -
David Turell,
2023-10-16, 18:59
- Biophysical controls -
David Turell,
2023-10-25, 21:36
- Biophysical controls: motors looping DNA -
David Turell,
2023-11-10, 15:54
- Biochemical controls: how mitochondria protect themselves -
David Turell,
2023-11-10, 19:09
- Biochemical controls: how T cells fight cancer -
David Turell,
2023-11-11, 16:55
- Biochemical controls: how MAIT T cells work - David Turell, 2023-11-11, 17:48
- Biochemical controls: ion gate controls -
David Turell,
2023-11-13, 21:03
- Biochemical controls: condensate formation in cells -
David Turell,
2023-11-13, 22:00
- Biochemical controls: reading DNA -
David Turell,
2023-11-24, 22:19
- Biochemical controls: enzymes control insulin level - David Turell, 2023-12-06, 14:59
- Biochemical controls: reading DNA -
David Turell,
2023-11-24, 22:19
- Biochemical controls: condensate formation in cells -
David Turell,
2023-11-13, 22:00
- Biochemical controls: how T cells fight cancer -
David Turell,
2023-11-11, 16:55
- Biochemical controls: how mitochondria protect themselves -
David Turell,
2023-11-10, 19:09
- Biophysical controls: motors looping DNA -
David Turell,
2023-11-10, 15:54
- Biophysical controls -
David Turell,
2023-10-25, 21:36
- Biochemical controls: handling stress -
David Turell,
2023-10-16, 18:59
- Biochemical controls: making operational synapses -
David Turell,
2023-10-12, 21:35
- Biochemical controls: new cell division discovery -
dhw,
2023-10-08, 11:47
- Biochemical controls: new cell division discovery -
GateKeeper,
2023-10-08, 00:24
- Biochemical controls: garbage disposal -
David Turell,
2023-08-26, 20:33
- Biochemical controls: treadmilling for cell division -
David Turell,
2023-08-25, 20:54
- Biochemical controls: cell control of mRNA -
David Turell,
2023-08-25, 20:42
- Biochemical controls: molecular language -
David Turell,
2023-08-17, 17:19
- Biochemical controls: nucleolus formation -
David Turell,
2023-08-15, 17:10
- Biochemical controls: cell division atomic level -
David Turell,
2023-08-14, 17:40
- Biochemical controls: plant controls for gravity -
David Turell,
2023-08-13, 23:08
- Biochemical controls: FUBI's role -
David Turell,
2023-08-12, 00:19
- Biochemical controls: molecular movements -
David Turell,
2023-08-10, 18:52
- Biochemical controls: making insulin -
David Turell,
2023-07-25, 18:02
- Biochemical controls: parasites control hosts -
David Turell,
2023-07-20, 18:05
- Biochemical controls: expanding bacterial walls -
David Turell,
2023-07-20, 17:43
- Biochemical controls: oxygen without photosynthesis -
David Turell,
2023-07-17, 16:52
- Biochemical controls: plant root growth factors -
David Turell,
2023-07-08, 18:23
- Biochemical controls: intracellular quantum actions - David Turell, 2023-09-09, 21:25
- Biochemical controls: photosynthesis from one photon -
David Turell,
2023-07-05, 16:10
- Biochemical controls: photosynthesis from one photon -
David Turell,
2023-07-03, 22:49
- Biochemical controls: photosynthesis in phytoplankton -
David Turell,
2023-06-02, 19:13
- Biochemical controls: photosynthesis in algae -
David Turell,
2023-02-01, 16:03
- Biochemical controls: potassium regulation -
David Turell,
2023-01-30, 23:58
- Biochemical controls: how RNA is supplied and delivered - David Turell, 2023-03-06, 19:09
- Biochemical controls: sight from initial molecule's actions -
David Turell,
2023-03-22, 20:26
- Biochemical controls: specialized retinal synapses -
David Turell,
2023-06-19, 15:56
- Biochemical controls: cell conversion controls -
David Turell,
2023-06-29, 17:19
- Biochemical controls: cell life or death controls - David Turell, 2023-06-30, 15:13
- Biochemical controls: cell conversion controls -
David Turell,
2023-06-29, 17:19
- Biochemical controls: specialized retinal synapses -
David Turell,
2023-06-19, 15:56
- Biochemical controls: intracellular electrical controls -
David Turell,
2022-09-10, 15:54
- Biochemical controls: controlling cell protein output -
David Turell,
2022-05-31, 19:20
- Biochemical controls: plant wound signals - David Turell, 2022-10-22, 16:57