Biochemical controls: how enzymes work (Introduction)

by David Turell @, Monday, April 25, 2022, 21:08 (218 days ago) @ David Turell

Picking their activity apart:

https://www.sciencedaily.com/releases/2022/04/220425104932.htm

"This concept is known as "electrostatic stress." For example, if the substrate (the substance upon which the enzyme acts) carries a negative charge, the enzyme could use a negative charge to "stress" the substrate and thus facilitate the reaction. However, a new study by the University of Göttingen and the Max Planck Institute for Multidisciplinary Sciences in Göttingen has now shown that, contrary to expectations, two equal charges do not necessarily lead to repulsion, but can cause attraction in enzymes. The results were published in the journal Nature Catalysis.

"The team investigated a well-known enzyme that has been studied extensively and is a textbook example of enzyme catalysis. Without the enzyme, the reaction is extremely slow: in fact, it would take 78 million years for half of the substrate to react. The enzyme accelerates this reaction by 1017 times, simply by positioning negative and positive charges in the active centre. Since the substrate contains a negatively charged group that is split off as carbon dioxide, it was assumed for decades that the negative charges of the enzyme serve to stress the substrate, which is also negatively charged, and accelerate the reaction. However, this hypothetical mechanism remained unproven because the structure of the reaction was too fast to be observed. (my bold)

***

"Unexpectedly, the negative charges of enzyme and substrate did not repel each other. Instead, they shared a proton, which acted like a kind of molecular glue in an attractive interaction. "The question of whether two equal charges are friends or foes in the context of enzyme catalysis has long been controversial in our field, and our study shows that the basic principles of how enzymes work are still a long way from being understood," says Tittmann. The crystallographic structures were analysed by quantum chemist Professor Ricardo Mata and his team from Göttingen University's Institute of Physical Chemistry. "The additional proton, which has a positive charge, between the two negative charges is not only used to attract the molecule involved in the reaction, but it triggers a cascade of proton transfer reactions that further accelerate the reaction," Mata explains.

"'We believe that these newly described principles of enzyme catalysis will help in the development of new chemical catalysts," says Tittmann. "Since the enzyme we studied releases carbon dioxide, the most important greenhouse gas produced by human activities, our results could help develop new chemical strategies for carbon dioxide fixation.'"

Comment: this shows how enzymes work, as if they knock two heads together, and demand cooperation. Enzymes force reactions to occur at the high-speed life's biology requires. Each giant enzyme molecule is precisely designed for each reaction it speeds up. Organic chemistry uses molecules that won't react quickly by themselves. Unfortunate, but those molecules are the only ones that will work. God knows what He is doing even if dhw has doubts with his second-guessing. It seems agnostics know better than God how to do things.


Complete thread:

 RSS Feed of thread

powered by my little forum