Convoluted human evolution: DNA guidance (Introduction)

by David Turell @, Saturday, August 27, 2016, 21:42 (572 days ago) @ dhw

Recovering DNA has shown that our evolutionary tree is very bushy and more like a river delta with streams in every direction:

"scientists once traced our own lineage from the present into the past, moving backward through a thicket of fossil relatives, each perched upon its own special branch to extinction.

"This approach yielded the now-ubiquitous image of the human family tree, with Homo sapiens - the one and only living hominid - sitting alone, seemingly inevitable, at the top. It's a powerful metaphor, but it also turns out to be a deeply mistaken one. Where once we saw each branch in isolation, DNA evidence now reveals a network of connections. From an African origin more than 1.8 million years ago, human ancestors flowed into different populations, following separate paths for hundreds of thousands of years, yet still coming together to mix their genes.


"The first high-coverage genome provided the biggest surprise: a tiny piece of a finger bone from Denisova Cave, in southern Siberia, has shown us an unknown population (now called the ‘Denisovans') who are as different from living people as from the Neanderthals. They make up some 5 per cent of the ancestry of living Aboriginal Australians, and a tiny fraction of more than a billion people across Asia and the New World.


"In the 1970s, geneticists noticed that humans are surprisingly inbred for a worldwide species. Other great apes - the chimpanzees, gorillas, and orangutans - each have much more variation, so much that today's primatologists recognise two species of orangutans, and up to four species of chimpanzees and gorillas. These apes have deep histories, with populations separated for hundreds of thousands of years. By contrast, humans throughout the world look like refugees from a single small part of Africa.


"When Neanderthals, Denisovans and ghost lineages, both inside and outside Africa, walked the Earth, their populations were each quite inbred, but collectively they were diverse, more like gorillas or chimpanzees than today's humans. Across the past 200,000 years, these separate streams were swallowed up by the growth of one African branch of humanity. Humans spread through the world like a broad river delta, carrying slightly different fractions of the flow of ancient streams.

"We don't yet know what triggered the success of these ancient Africans. But we can see some ways that they benefited from mixing with distant populations. As they mixed, they picked up biological solutions first innovated and road-tested by distant populations. Already, we have found Neanderthal or Denisovan genes contribute to immunity, metabolism and proteins expressed in hair and skin. A gene derived from Denisovans has helped people adapt to the low-oxygen environment of the Tibetan plateau.

Just last month, two new studies found evidence of yet more Neanderthal and Denisovan genes active in human immune outside the tropics does pose unique challenges, including a deficit of vitamin-D production, now known to strongly affect immunity. When Africans encountered these populations, any new immune tricks might have been valuable, especially those field-tested against local parasites. A talent for quickly adapting to new pathogens and parasites might even explain the initial growth of our ancestors within Africa, where they would have encountered pathogen diversity higher than anywhere else in the archaic human range.


"anthropologists are just starting to face the question of how we define species with ancient DNA. Faced with the evidence of deep genetic histories of Neanderthals, Denisovans and the ghost populations of Africa, conservation biologists would not hesitate to classify them as species, just as they now recognise several species of gorillas. Before we can settle this, we might need to uncover more about the anatomy and behaviour of these ancient people, the consequences of their genetic and historical differences.

"What inspires me most about the braided stream of our origins is what it implies about future discoveries. Tracing ghost lineages has already taken us further into the past than the 400,000 years of the current record for ancient DNA from hominins. Across the 7 million years or more of hominin evolution, there must have been dozens of such long-lasting populations, sometimes mixing and sharing adaptations with each other. As in the case of the Denisovans, we might already have tiny fossil traces of these ancient groups that we cannot yet recognize. Many more are out there, waiting for anthropologists to unearth them.

"We are searching."

Comment: We are more inbred than any other primate. We have picked up useful attributes from each set of hominins we bred with. Looks like a guided evolution to me since the pattern is so unusual compared to other primate species..

Complete thread:

 RSS Feed of thread

powered by my little forum