Genome complexity: controlling DNA over copying (Introduction)
A new system found:
https://www.sciencedaily.com/releases/2023/01/230124101607.htm
"The cells of humans and all other higher organisms use a complex system of checkpoints and "licensing" proteins to ensure that they replicate their genomes precisely once before dividing. In preparation for cell division, the licensing proteins attach to specific regions in the DNA, designating them as replication origins. When the DNA synthesis phase of the cell cycle begins, replication begins only at those licensed sites, and only initiates, or "fires" once, according to the current model.
"That model was missing a crucial point, though. "The same factor that is allowing for this licensing to happen is only degraded after these replication origins have fired," said senior author Dr. Tobias Meyer, the Joseph Hinsey Professor in Cell and Developmental Biology at Weill Cornell Medicine. "In principle, the cell could load these licensing machines onto DNA that's already replicated, so, instead of two copies, you're getting three or four copies of that segment of the DNA, and these cells would be expected to lose genome integrity and die or become cancerous."
***
"The work revealed that a well-known licensing factor, CDT1, not only licenses a segment of DNA to become a replication origin, but also acts as a brake for DNA replication, preventing an essential replication enzyme called CMG helicase from functioning. To start synthesizing DNA, the cell's enzymes must first break down CDT1. "Previously proposed mechanisms for coordinating this transition from the licensing phase of the cell cycle to the firing phase of the cell cycle have depended on inhibiting licensing factors," said Ratnayeke, adding that "the mechanism that we identified here is actually the opposite … the licensing factor CDT1 itself is preventing the progression of DNA synthesis."
"To confirm their results, the scientists collaborated with colleagues at the Medical Research Council in Cambridge, UK, who found that the inhibitory mechanism can be recapitulated in a simplified system that reproduces the entire DNA synthesis process with purified components in a test tube. "That allowed us to reconstitute all the components for DNA synthesis, and to prove that CMG helicase is directly inhibited by CDT1," said Dr. Meyer, who is also a professor of biochemistry and a member of the Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine."
Comment: another obviously deigned system requiring specific giant enzymes in place.
Complete thread:
- Genome complexity -
David Turell,
2012-08-27, 16:12
- Genome complexity -
David Turell,
2012-11-21, 15:02
- Genome complexity - David Turell, 2012-11-30, 04:41
- Genome complexity -
David Turell,
2012-12-09, 00:17
- Genome complexity -
hyjyljyj,
2012-12-09, 13:57
- Genome complexity -
David Turell,
2012-12-09, 15:04
- Genome complexity; another layer -
David Turell,
2012-12-11, 16:11
- Genome complexity; another layer -
David Turell,
2012-12-11, 18:39
- Genome complexity; quick DNA repair -
David Turell,
2012-12-14, 01:09
- Genome complexity;timing copies -
David Turell,
2012-12-29, 15:19
- Genome complexity; another code -
David Turell,
2013-01-21, 14:53
- Genome complexity; 4 stranded DNA -
David Turell,
2013-01-22, 21:00
- Genome complexity; lncRNA -
David Turell,
2013-01-25, 14:41
- Genome complexity; Transcription factors -
David Turell,
2013-01-28, 15:57
- Genome complexity; Embryology -
David Turell,
2013-01-29, 15:37
- Genome complexity; gene expression -
David Turell,
2013-02-04, 15:54
- Genome complexity; epigenetic gene expression -
David Turell,
2013-02-04, 18:26
- Genome complexity; garbage removal -
David Turell,
2013-02-07, 14:48
- Genome complexity; chromosome protection -
David Turell,
2013-02-07, 15:24
- Genome complexity; new study techniques -
David Turell,
2013-02-08, 15:46
- Genome complexity; epigenetics -
David Turell,
2013-02-12, 21:09
- Genome complexity; epigenetics -
dhw,
2013-02-14, 15:09
- Genome complexity; epigenetics: Lamarck is back -
David Turell,
2016-06-01, 01:34
- Genome complexity; epigenetics: Lamarck is back -
dhw,
2016-06-01, 13:22
- Genome complexity; epigenetics: Lamarck is back -
David Turell,
2016-06-01, 22:48
- Genome complexity; epigenetics: Lamarck is back -
dhw,
2016-06-02, 12:49
- Genome complexity; epigenetics: Lamarck is back - David Turell, 2016-06-03, 02:03
- Genome complexity; epigenetics: Lamarck is back -
dhw,
2016-06-02, 12:49
- Genome complexity; epigenetics: Lamarck is back -
David Turell,
2016-06-01, 22:48
- Genome complexity; epigenetics: Lamarck is back -
David Turell,
2017-08-17, 15:32
- Genome complexity; epigenetics: Lamarck is back -
dhw,
2017-08-18, 13:36
- Genome complexity; epigenetics: Lamarck is back -
David Turell,
2017-08-18, 15:38
- Genome complexity; epigenetics: Lamarck is back -
David Turell,
2018-08-29, 20:04
- Genome complexity; epigenetics: Lamarck is back -
Balance_Maintained,
2018-08-29, 22:22
- Genome complexity; epigenetics: Lamarck is back - David Turell, 2018-08-30, 00:58
- Genome complexity; epigenetics: Lamarck is back -
dhw,
2018-08-30, 08:12
- Genome complexity; epigenetics: Lamarck is back -
David Turell,
2018-08-30, 18:02
- Genome complexity; epigenetics: Lamarck is back -
dhw,
2018-08-31, 13:42
- Genome complexity; epigenetics: Lamarck is back -
David Turell,
2018-08-31, 19:18
- Genome complexity; epigenetics: Lamarck is back -
Balance_Maintained,
2018-08-31, 21:14
- Genome complexity; epigenetics: Lamarck is back - David Turell, 2018-08-31, 23:54
- Genome complexity; epigenetics: Lamarck is back -
dhw,
2018-09-01, 10:00
- Genome complexity; epigenetics: Lamarck is back -
David Turell,
2018-09-01, 15:25
- Genome complexity; epigenetics: Lamarck is back -
Balance_Maintained,
2018-09-01, 23:03
- Genome complexity; epigenetics: Lamarck is back - David Turell, 2018-09-02, 15:12
- Genome complexity; epigenetics: Lamarck is back -
dhw,
2018-09-02, 09:17
- Genome complexity; epigenetics: Lamarck is back -
David Turell,
2018-09-02, 15:24
- Genome complexity; epigenetics: Lamarck is back -
David Turell,
2021-10-21, 21:06
- Genome complexity; communication along DNA - David Turell, 2021-10-27, 22:16
- Genome complexity; epigenetics: Lamarck is back -
David Turell,
2021-10-21, 21:06
- Genome complexity; epigenetics: Lamarck is back -
David Turell,
2018-09-02, 15:24
- Genome complexity; epigenetics: Lamarck is back -
Balance_Maintained,
2018-09-01, 23:03
- Genome complexity; epigenetics: Lamarck is back -
David Turell,
2018-09-01, 15:25
- Genome complexity; epigenetics: Lamarck is back -
Balance_Maintained,
2018-08-31, 21:14
- Genome complexity; epigenetics: Lamarck is back -
David Turell,
2018-08-31, 19:18
- Genome complexity; epigenetics: Lamarck is back -
dhw,
2018-08-31, 13:42
- Genome complexity; epigenetics: Lamarck is back -
David Turell,
2018-08-30, 18:02
- Genome complexity; epigenetics: Lamarck is back -
Balance_Maintained,
2018-08-29, 22:22
- Genome complexity; epigenetics: Lamarck is back -
David Turell,
2018-08-29, 20:04
- Genome complexity; epigenetics: Lamarck is back -
David Turell,
2017-08-18, 15:38
- Genome complexity; epigenetics: Lamarck is back -
dhw,
2017-08-18, 13:36
- Genome complexity; epigenetics: Lamarck is back -
dhw,
2016-06-01, 13:22
- Genome complexity; epigenetics: Lamarck is back -
David Turell,
2016-06-01, 01:34
- Genome complexity; fat control -
David Turell,
2013-02-14, 15:10
- Genome complexity; gene expression -
David Turell,
2013-02-18, 15:58
- Genome complexity: Helicase speed -
David Turell,
2013-02-21, 05:18
- Genome complexity: RNA controls -
David Turell,
2013-02-21, 15:32
- Genome complexity: a new RNA -
David Turell,
2013-02-27, 18:30
- Genome complexity: a new RNA -
David Turell,
2013-03-04, 18:12
- Genome complexity: a new RNA, circular -
David Turell,
2017-08-01, 18:35
- Genome complexity:cell controls of gene expression -
David Turell,
2017-08-03, 18:04
- Genome complexity: origins of DNA folding -
David Turell,
2017-08-11, 00:23
- Genome complexity: circular DNA in brains -
David Turell,
2017-08-11, 04:50
- Genome complexity: circular DNA in brains -
David Turell,
2017-08-12, 01:03
- Genome complexity: controlling cell specificity -
David Turell,
2017-08-22, 22:30
- Genome complexity:a protein controls chromosomes - David Turell, 2017-08-25, 00:56
- Genome complexity: controlling cell specificity -
David Turell,
2017-08-22, 22:30
- Genome complexity: circular DNA in brains -
David Turell,
2017-08-12, 01:03
- Genome complexity: circular DNA in brains -
David Turell,
2017-08-11, 04:50
- Genome complexity:cell controls of gene expression -
David Turell,
2017-08-30, 22:56
- Genome complexity: 3-D DNA packing -
David Turell,
2017-09-07, 05:35
- Genome complexity: 3-D DNA packing -
dhw,
2017-09-07, 10:57
- Genome complexity: 3-D DNA packing -
David Turell,
2017-09-07, 13:50
- Genome complexity: bacterial gene fusion -
David Turell,
2017-09-08, 14:06
- Genome complexity: waking sleeping ribosomes -
David Turell,
2017-09-12, 18:31
- Genome complexity: DNA repair two ways - David Turell, 2017-09-21, 17:27
- Genome complexity: waking sleeping ribosomes -
David Turell,
2017-09-12, 18:31
- Genome complexity: 3-D DNA football controls -
David Turell,
2017-09-27, 14:56
- Genome complexity:3-D DNA neighborhood controls -
David Turell,
2017-09-29, 18:59
- Genome complexity:4-D DNA neighborhood controls -
David Turell,
2017-10-06, 22:04
- Genome complexity: DNA epigenetic controls -
David Turell,
2017-10-30, 17:44
- Genome complexity: DNA enzyme controls -
David Turell,
2017-10-30, 18:01
- Genome complexity: Archaea and nuclei -
David Turell,
2017-11-08, 17:32
- Genome complexity: DNA is all sizes -
David Turell,
2017-11-10, 23:03
- Genome complexity: amazing translation efficiency - David Turell, 2017-11-17, 15:09
- Genome complexity: How Archaea handle DNA - David Turell, 2021-03-11, 18:18
- Genome complexity: DNA is all sizes -
David Turell,
2017-11-10, 23:03
- Genome complexity: Archaea and nuclei -
David Turell,
2017-11-08, 17:32
- Genome complexity: DNA enzyme controls -
David Turell,
2017-10-30, 18:01
- Genome complexity: DNA epigenetic controls -
David Turell,
2017-10-30, 17:44
- Genome complexity:3-D DNA -
David Turell,
2018-04-23, 18:16
- Genome complexity: DNA repair mechanisms -
David Turell,
2018-09-02, 18:20
- Genome complexity: 3 types of bees from one DNA -
David Turell,
2018-09-12, 15:11
- Genome complexity: genes and what they control -
David Turell,
2018-09-20, 23:39
- Genome complexity: genes and what they control -
Balance_Maintained,
2018-09-21, 04:35
- Genome complexity: HOX genes appeared early in evolution -
David Turell,
2018-09-27, 19:48
- Genome complexity: HOX genes appeared early in evolution -
Balance_Maintained,
2018-09-27, 20:10
- Genome complexity: protecting DNA integrity -
David Turell,
2018-10-03, 15:43
- Genome complexity: genes control different stress responses -
David Turell,
2018-10-03, 18:43
- Genome complexity: genes control different stress responses - dhw, 2018-10-04, 10:56
- Genome complexity: DNA's physical properties -
David Turell,
2021-03-09, 20:04
- Genome complexity: Adjusting x chromosomes in cells - David Turell, 2021-03-09, 22:13
- Genome complexity: new editing systems found - David Turell, 2021-09-30, 22:19
- Genome complexity: protecting DNA integrity -
David Turell,
2018-10-03, 19:21
- Genome complexity: automatic mechanism to kill early cancer -
David Turell,
2018-11-01, 23:42
- Genome complexity: 3-D DNA contortions ad complexity -
David Turell,
2018-11-03, 18:01
- Genome complexity: 3-D DNA contortions ad complexity -
dhw,
2018-11-04, 12:33
- Genome complexity: 3-D DNA contortions ad complexity - David Turell, 2018-11-04, 18:35
- Genome complexity: 3-D DNA contortions ad complexity -
dhw,
2018-11-04, 12:33
- Genome complexity: 3-D DNA contortions ad complexity -
David Turell,
2018-11-03, 18:01
- Genome complexity: protecting DNA integrity in reproduction -
David Turell,
2018-11-04, 15:00
- Genome complexity: controlling DNA in the cell -
David Turell,
2018-11-04, 19:52
- Genome complexity: controlling DNA in the cell -
dhw,
2018-11-05, 10:03
- Genome complexity: controlling DNA in the cell -
David Turell,
2018-11-05, 20:20
- Genome complexity: controlling DNA in the cell -
dhw,
2018-11-06, 08:33
- Genome complexity: controlling DNA in the cell -
David Turell,
2018-11-06, 14:50
- Genome complexity: controlling DNA in the cell -
dhw,
2018-11-07, 12:17
- Genome complexity: controlling DNA in the cell -
David Turell,
2018-11-07, 18:43
- Genome complexity: controlling DNA in the cell -
dhw,
2018-11-08, 11:41
- Genome complexity: controlling DNA in the cell -
David Turell,
2018-11-08, 18:20
- Genome complexity: controlling DNA in the cell -
dhw,
2018-11-09, 12:39
- Genome complexity: controlling DNA in the cell -
David Turell,
2018-11-09, 15:25
- Genome complexity: DNA 3-D importance -
David Turell,
2018-11-09, 23:49
- Genome complexity: DNA 3-D importance in replication -
David Turell,
2019-01-01, 18:03
- Genome complexity: DNA 3-D importance in replication -
dhw,
2019-01-02, 12:09
- Genome complexity: DNA 3-D importance in replication -
David Turell,
2019-01-02, 15:09
- Genome complexity: DNA 3-D importance in replication -
dhw,
2019-01-03, 10:10
- Genome complexity: DNA 3-D importance in replication -
David Turell,
2019-01-03, 19:03
- Genome complexity: DNA tiny part of the controls -
David Turell,
2019-01-03, 19:35
- Genome complexity: control of DNA in embryology - David Turell, 2019-01-03, 23:07
- Genome complexity: DNA 3-D importance in replication -
dhw,
2019-01-04, 13:22
- Genome complexity: DNA 3-D importance in replication -
David Turell,
2019-01-04, 15:35
- Genome complexity: DNA 3-D importance in replication -
dhw,
2019-01-05, 12:40
- Genome complexity: DNA 3-D importance in replication -
David Turell,
2019-01-05, 15:03
- Genome complexity: DNA 3-D importance in replication -
dhw,
2019-01-06, 10:39
- Genome complexity: DNA 3-D importance in replication - David Turell, 2019-01-06, 15:50
- Genome complexity: DNA 3-D importance in replication -
dhw,
2019-01-06, 10:39
- Genome complexity: DNA 3-D importance in replication -
David Turell,
2019-01-05, 15:03
- Genome complexity: DNA 3-D importance in replication -
dhw,
2019-01-05, 12:40
- Genome complexity: DNA 3-D importance in replication -
David Turell,
2019-01-04, 15:35
- Genome complexity: DNA tiny part of the controls -
David Turell,
2019-01-03, 19:35
- Genome complexity: DNA 3-D importance in replication -
David Turell,
2019-01-03, 19:03
- Genome complexity: DNA 3-D importance in replication -
dhw,
2019-01-03, 10:10
- Genome complexity: DNA 3-D importance in replication -
David Turell,
2019-01-02, 15:09
- Genome complexity: chromatin makes DNA 3-D setup -
David Turell,
2020-01-10, 21:37
- Genome complexity: how so few genes make us so complex -
David Turell,
2020-01-15, 19:40
- Genome complexity:cells control degree of gene expression -
David Turell,
2020-01-16, 20:35
- Genome complexity: more about transposons role -
David Turell,
2021-02-22, 19:57
- Genome complexity: more about transposons role -
David Turell,
2021-05-12, 20:48
- Genome complexity: How butterfly wings are made - David Turell, 2022-10-22, 17:27
- Genome complexity: more about transposons role -
David Turell,
2021-05-12, 20:48
- Genome complexity: more about transposons role -
David Turell,
2021-02-22, 19:57
- Genome complexity:cells control degree of gene expression -
David Turell,
2020-01-16, 20:35
- Genome complexity: how so few genes make us so complex -
David Turell,
2020-01-15, 19:40
- Genome complexity: DNA 3-D importance in replication -
dhw,
2019-01-02, 12:09
- Genome complexity: DNA 3-D importance in replication -
David Turell,
2019-01-01, 18:03
- Genome complexity: DNA 3-D importance -
David Turell,
2018-11-09, 23:49
- Genome complexity: controlling DNA in the cell -
David Turell,
2018-11-09, 15:25
- Genome complexity: controlling DNA in the cell -
dhw,
2018-11-09, 12:39
- Genome complexity: controlling DNA in the cell -
David Turell,
2018-11-08, 18:20
- Genome complexity: controlling DNA in the cell -
dhw,
2018-11-08, 11:41
- Genome complexity: controlling DNA in the cell -
David Turell,
2018-11-07, 18:43
- Genome complexity: controlling DNA in the cell -
dhw,
2018-11-07, 12:17
- Genome complexity: controlling DNA in the cell -
David Turell,
2018-11-06, 14:50
- Genome complexity: controlling DNA in the cell -
dhw,
2018-11-06, 08:33
- Genome complexity: controlling RNA in oocytes: -
David Turell,
2023-01-25, 16:57
- Genome complexity: controlling DNA over copying - David Turell, 2023-01-25, 21:19
- Genome complexity: controlling DNA in the cell -
David Turell,
2018-11-05, 20:20
- Genome complexity: controlling DNA in the cell -
dhw,
2018-11-05, 10:03
- Genome complexity: controlling DNA in the cell -
David Turell,
2018-11-04, 19:52
- Genome complexity: automatic mechanism to kill early cancer -
David Turell,
2018-11-01, 23:42
- Genome complexity: genes control different stress responses -
David Turell,
2018-10-03, 18:43
- Genome complexity: protecting DNA integrity -
David Turell,
2018-10-03, 15:43
- Genome complexity: HOX genes appeared early in evolution -
Balance_Maintained,
2018-09-27, 20:10
- Genome complexity: HOX genes appeared early in evolution -
David Turell,
2018-09-27, 19:48
- Genome complexity: genes and what they control -
Balance_Maintained,
2018-09-21, 04:35
- Genome complexity: genes and what they control -
David Turell,
2018-09-20, 23:39
- Genome complexity: 3 types of bees from one DNA -
David Turell,
2018-09-12, 15:11
- Genome complexity: DNA repair mechanisms -
David Turell,
2018-09-02, 18:20
- Genome complexity:4-D DNA neighborhood controls -
David Turell,
2017-10-06, 22:04
- Genome complexity:3-D DNA neighborhood controls -
David Turell,
2017-09-29, 18:59
- Genome complexity: bacterial gene fusion -
David Turell,
2017-09-08, 14:06
- Genome complexity: 3-D DNA packing -
David Turell,
2017-09-07, 13:50
- Genome complexity: 3-D DNA packing -
dhw,
2017-09-07, 10:57
- Genome complexity: 3-D DNA packing -
David Turell,
2017-09-07, 05:35
- Genome complexity: origins of DNA folding -
David Turell,
2017-08-11, 00:23
- Genome complexity:cell controls of gene expression -
David Turell,
2017-08-03, 18:04
- Genome complexity: a new RNA, circular -
David Turell,
2017-08-01, 18:35
- Genome complexity: a new RNA -
David Turell,
2013-03-04, 18:12
- Genome complexity: a new RNA -
David Turell,
2013-02-27, 18:30
- Genome complexity: RNA controls -
David Turell,
2013-02-21, 15:32
- Genome complexity: Helicase speed -
David Turell,
2013-02-21, 05:18
- Genome complexity; gene expression -
David Turell,
2013-02-18, 15:58
- Genome complexity; epigenetics -
dhw,
2013-02-14, 15:09
- Genome complexity; epigenetics -
David Turell,
2013-02-12, 21:09
- Genome complexity; new study techniques -
David Turell,
2013-02-08, 15:46
- Genome complexity; chromosome protection -
David Turell,
2013-02-07, 15:24
- Genome complexity; garbage removal -
David Turell,
2013-02-07, 14:48
- Genome complexity; epigenetic gene expression -
David Turell,
2013-02-04, 18:26
- Genome complexity; gene expression -
David Turell,
2013-02-04, 15:54
- Genome complexity; Embryology -
David Turell,
2013-01-29, 15:37
- Genome complexity; lncRNA -
David Turell,
2013-04-05, 18:34
- Genome complexity; lncRNA -
David Turell,
2013-04-25, 16:11
- Genome complexity; lncRNA - David Turell, 2013-07-10, 02:51
- Genome complexity; lncRNA -
David Turell,
2013-04-25, 16:11
- Genome complexity; Transcription factors -
David Turell,
2013-01-28, 15:57
- Genome complexity; lncRNA -
David Turell,
2013-01-25, 14:41
- Genome complexity; 4 stranded DNA -
David Turell,
2013-01-22, 21:00
- Genome complexity; another code -
David Turell,
2013-01-21, 14:53
- Genome complexity;timing copies -
David Turell,
2012-12-29, 15:19
- Genome complexity; quick DNA repair -
David Turell,
2012-12-14, 01:09
- Genome complexity; another layer -
David Turell,
2012-12-11, 18:39
- Genome complexity; another layer -
David Turell,
2012-12-11, 16:11
- Genome complexity -
David Turell,
2012-12-09, 15:04
- Genome complexity -
hyjyljyj,
2012-12-09, 13:57
- Genome complexity -
David Turell,
2012-11-21, 15:02