Genome complexity: bacterial gene fusion (Introduction)
A new study finds it helps with survivability and produces new protein:
https://phys.org/news/2017-09-bacteria-genes-fuse-production-proteins.html
"All organisms must continuously adapt to their environment in order to survive. Such adaptation is brought about by changes in their genetic material. Together with colleagues from New Zealand, Paul Rainey from the Max Planck Institute for Evolutionary Biology in Plön has been studying the emergence of new, better adapted cell types in the laboratory. The researchers have discovered that one mechanism by which bacteria can develop new characteristics is through the fusion of two existing genes. In some of the cells, this resulted in genes coming under the control of a new promoter, resulting in the synthesis of larger quantities of the protein encoded by the gene. In another case, two neighbouring genes fused together. The protein encoded by the resulting gene – composed of parts of the two original genes – has a different localization within the cell. This effect is also known from other organisms, including humans. A gene fusion of this type results in bacterial cells which are better adapted to their environment.
"Changes to the genetic code in existing genes – mutations – can equip an organism with new characteristics. Duplication of genes and the insertion of extra sections of DNA can also increase an organism's adaptability. Over the course of evolution, it is even possible for completely new genes to be created. This involves changes in previously non-functional stretches of DNA, which result in them becoming functional templates for protein synthesis. Another known mechanism of gene creation is the fusion of two genes, resulting in the production of a novel protein.
***
"According to Rainey and his colleagues, mat formation is caused by a variety of mutational changes in genes that regulate di-guanylate cyclase activity. These mutations switch off negative regulators causing the di-guanylate cyclases to assume an active state. When the researchers eliminated pathways subject to negative regulation they discovered a set of previously unknown mutations that caused the wrinkly mat-forming phenotype. In some of these, the di-guanylate cyclase gene had come under the control of a different promoter, resulting in increased di-guanylate cyclase production.
"In some wrinkly cells, however, the activity of this gene was unchanged. Analysis of the mutations in these cells showed that these mutants contained a chimeric gene formed from the di-guanylate cyclase gene and a neighbouring gene. The protein encoded by the latter is normally active in the cell membrane. "There must, therefore, have been a fusion event between two genes encoding proteins which are usually found at different locations within the cell," explains Rainey. The new protein possesses a membrane domain and is embedded in the cell membrane. This activates the protein, resulting in increased cellulose production.
"In other organisms too, proteins produced by gene fusions frequently end up having a different localization within the cell. In humans, for example, the Kua-UEV gene is the result of the fusion of the Kua and UEV genes. The new UEV protein now localizes to internal cell membranes and performs a new function. In humans, 64 percent of gene families for mitochondrial proteins contain a gene for a protein which is active elsewhere in the cell. "Although in our experiments gene fusion events made up only about 0.1 percent of mutations resulting in the wrinkly phenotype, outside the laboratory they may be more common," says Rainey."
Comment: This study supports Shapiro's work on bacteria manipulating their DNA. It does not explain the underlying mechanism which I think is existing informational instructions in the genome.
Complete thread:
- Genome complexity -
David Turell,
2012-08-27, 16:12
- Genome complexity -
David Turell,
2012-11-21, 15:02
- Genome complexity - David Turell, 2012-11-30, 04:41
- Genome complexity -
David Turell,
2012-12-09, 00:17
- Genome complexity -
hyjyljyj,
2012-12-09, 13:57
- Genome complexity -
David Turell,
2012-12-09, 15:04
- Genome complexity; another layer -
David Turell,
2012-12-11, 16:11
- Genome complexity; another layer -
David Turell,
2012-12-11, 18:39
- Genome complexity; quick DNA repair -
David Turell,
2012-12-14, 01:09
- Genome complexity;timing copies -
David Turell,
2012-12-29, 15:19
- Genome complexity; another code -
David Turell,
2013-01-21, 14:53
- Genome complexity; 4 stranded DNA -
David Turell,
2013-01-22, 21:00
- Genome complexity; lncRNA -
David Turell,
2013-01-25, 14:41
- Genome complexity; Transcription factors -
David Turell,
2013-01-28, 15:57
- Genome complexity; Embryology -
David Turell,
2013-01-29, 15:37
- Genome complexity; gene expression -
David Turell,
2013-02-04, 15:54
- Genome complexity; epigenetic gene expression -
David Turell,
2013-02-04, 18:26
- Genome complexity; garbage removal -
David Turell,
2013-02-07, 14:48
- Genome complexity; chromosome protection -
David Turell,
2013-02-07, 15:24
- Genome complexity; new study techniques -
David Turell,
2013-02-08, 15:46
- Genome complexity; epigenetics -
David Turell,
2013-02-12, 21:09
- Genome complexity; epigenetics -
dhw,
2013-02-14, 15:09
- Genome complexity; epigenetics: Lamarck is back -
David Turell,
2016-06-01, 01:34
- Genome complexity; epigenetics: Lamarck is back -
dhw,
2016-06-01, 13:22
- Genome complexity; epigenetics: Lamarck is back -
David Turell,
2016-06-01, 22:48
- Genome complexity; epigenetics: Lamarck is back -
dhw,
2016-06-02, 12:49
- Genome complexity; epigenetics: Lamarck is back - David Turell, 2016-06-03, 02:03
- Genome complexity; epigenetics: Lamarck is back -
dhw,
2016-06-02, 12:49
- Genome complexity; epigenetics: Lamarck is back -
David Turell,
2016-06-01, 22:48
- Genome complexity; epigenetics: Lamarck is back -
David Turell,
2017-08-17, 15:32
- Genome complexity; epigenetics: Lamarck is back -
dhw,
2017-08-18, 13:36
- Genome complexity; epigenetics: Lamarck is back -
David Turell,
2017-08-18, 15:38
- Genome complexity; epigenetics: Lamarck is back -
David Turell,
2018-08-29, 20:04
- Genome complexity; epigenetics: Lamarck is back -
Balance_Maintained,
2018-08-29, 22:22
- Genome complexity; epigenetics: Lamarck is back - David Turell, 2018-08-30, 00:58
- Genome complexity; epigenetics: Lamarck is back -
dhw,
2018-08-30, 08:12
- Genome complexity; epigenetics: Lamarck is back -
David Turell,
2018-08-30, 18:02
- Genome complexity; epigenetics: Lamarck is back -
dhw,
2018-08-31, 13:42
- Genome complexity; epigenetics: Lamarck is back -
David Turell,
2018-08-31, 19:18
- Genome complexity; epigenetics: Lamarck is back -
Balance_Maintained,
2018-08-31, 21:14
- Genome complexity; epigenetics: Lamarck is back - David Turell, 2018-08-31, 23:54
- Genome complexity; epigenetics: Lamarck is back -
dhw,
2018-09-01, 10:00
- Genome complexity; epigenetics: Lamarck is back -
David Turell,
2018-09-01, 15:25
- Genome complexity; epigenetics: Lamarck is back -
Balance_Maintained,
2018-09-01, 23:03
- Genome complexity; epigenetics: Lamarck is back - David Turell, 2018-09-02, 15:12
- Genome complexity; epigenetics: Lamarck is back -
dhw,
2018-09-02, 09:17
- Genome complexity; epigenetics: Lamarck is back -
David Turell,
2018-09-02, 15:24
- Genome complexity; epigenetics: Lamarck is back -
David Turell,
2021-10-21, 21:06
- Genome complexity; communication along DNA - David Turell, 2021-10-27, 22:16
- Genome complexity; epigenetics: Lamarck is back -
David Turell,
2021-10-21, 21:06
- Genome complexity; epigenetics: Lamarck is back -
David Turell,
2018-09-02, 15:24
- Genome complexity; epigenetics: Lamarck is back -
Balance_Maintained,
2018-09-01, 23:03
- Genome complexity; epigenetics: Lamarck is back -
David Turell,
2018-09-01, 15:25
- Genome complexity; epigenetics: Lamarck is back -
Balance_Maintained,
2018-08-31, 21:14
- Genome complexity; epigenetics: Lamarck is back -
David Turell,
2018-08-31, 19:18
- Genome complexity; epigenetics: Lamarck is back -
dhw,
2018-08-31, 13:42
- Genome complexity; epigenetics: Lamarck is back -
David Turell,
2018-08-30, 18:02
- Genome complexity; epigenetics: Lamarck is back -
Balance_Maintained,
2018-08-29, 22:22
- Genome complexity; epigenetics: Lamarck is back -
David Turell,
2018-08-29, 20:04
- Genome complexity; epigenetics: Lamarck is back -
David Turell,
2017-08-18, 15:38
- Genome complexity; epigenetics: Lamarck is back -
dhw,
2017-08-18, 13:36
- Genome complexity; epigenetics: Lamarck is back -
dhw,
2016-06-01, 13:22
- Genome complexity; epigenetics: Lamarck is back -
David Turell,
2016-06-01, 01:34
- Genome complexity; fat control -
David Turell,
2013-02-14, 15:10
- Genome complexity; gene expression -
David Turell,
2013-02-18, 15:58
- Genome complexity: Helicase speed -
David Turell,
2013-02-21, 05:18
- Genome complexity: RNA controls -
David Turell,
2013-02-21, 15:32
- Genome complexity: a new RNA -
David Turell,
2013-02-27, 18:30
- Genome complexity: a new RNA -
David Turell,
2013-03-04, 18:12
- Genome complexity: a new RNA, circular -
David Turell,
2017-08-01, 18:35
- Genome complexity:cell controls of gene expression -
David Turell,
2017-08-03, 18:04
- Genome complexity: origins of DNA folding -
David Turell,
2017-08-11, 00:23
- Genome complexity: circular DNA in brains -
David Turell,
2017-08-11, 04:50
- Genome complexity: circular DNA in brains -
David Turell,
2017-08-12, 01:03
- Genome complexity: controlling cell specificity -
David Turell,
2017-08-22, 22:30
- Genome complexity:a protein controls chromosomes - David Turell, 2017-08-25, 00:56
- Genome complexity: controlling cell specificity -
David Turell,
2017-08-22, 22:30
- Genome complexity: circular DNA in brains -
David Turell,
2017-08-12, 01:03
- Genome complexity: circular DNA in brains -
David Turell,
2017-08-11, 04:50
- Genome complexity:cell controls of gene expression -
David Turell,
2017-08-30, 22:56
- Genome complexity: 3-D DNA packing -
David Turell,
2017-09-07, 05:35
- Genome complexity: 3-D DNA packing -
dhw,
2017-09-07, 10:57
- Genome complexity: 3-D DNA packing -
David Turell,
2017-09-07, 13:50
- Genome complexity: bacterial gene fusion -
David Turell,
2017-09-08, 14:06
- Genome complexity: waking sleeping ribosomes -
David Turell,
2017-09-12, 18:31
- Genome complexity: DNA repair two ways - David Turell, 2017-09-21, 17:27
- Genome complexity: waking sleeping ribosomes -
David Turell,
2017-09-12, 18:31
- Genome complexity: 3-D DNA football controls -
David Turell,
2017-09-27, 14:56
- Genome complexity:3-D DNA neighborhood controls -
David Turell,
2017-09-29, 18:59
- Genome complexity:4-D DNA neighborhood controls -
David Turell,
2017-10-06, 22:04
- Genome complexity: DNA epigenetic controls -
David Turell,
2017-10-30, 17:44
- Genome complexity: DNA enzyme controls -
David Turell,
2017-10-30, 18:01
- Genome complexity: Archaea and nuclei -
David Turell,
2017-11-08, 17:32
- Genome complexity: DNA is all sizes -
David Turell,
2017-11-10, 23:03
- Genome complexity: amazing translation efficiency - David Turell, 2017-11-17, 15:09
- Genome complexity: How Archaea handle DNA - David Turell, 2021-03-11, 18:18
- Genome complexity: DNA is all sizes -
David Turell,
2017-11-10, 23:03
- Genome complexity: Archaea and nuclei -
David Turell,
2017-11-08, 17:32
- Genome complexity: DNA enzyme controls -
David Turell,
2017-10-30, 18:01
- Genome complexity: DNA epigenetic controls -
David Turell,
2017-10-30, 17:44
- Genome complexity:3-D DNA -
David Turell,
2018-04-23, 18:16
- Genome complexity: DNA repair mechanisms -
David Turell,
2018-09-02, 18:20
- Genome complexity: 3 types of bees from one DNA -
David Turell,
2018-09-12, 15:11
- Genome complexity: genes and what they control -
David Turell,
2018-09-20, 23:39
- Genome complexity: genes and what they control -
Balance_Maintained,
2018-09-21, 04:35
- Genome complexity: HOX genes appeared early in evolution -
David Turell,
2018-09-27, 19:48
- Genome complexity: HOX genes appeared early in evolution -
Balance_Maintained,
2018-09-27, 20:10
- Genome complexity: protecting DNA integrity -
David Turell,
2018-10-03, 15:43
- Genome complexity: genes control different stress responses -
David Turell,
2018-10-03, 18:43
- Genome complexity: genes control different stress responses - dhw, 2018-10-04, 10:56
- Genome complexity: DNA's physical properties -
David Turell,
2021-03-09, 20:04
- Genome complexity: Adjusting x chromosomes in cells - David Turell, 2021-03-09, 22:13
- Genome complexity: new editing systems found - David Turell, 2021-09-30, 22:19
- Genome complexity: protecting DNA integrity -
David Turell,
2018-10-03, 19:21
- Genome complexity: automatic mechanism to kill early cancer -
David Turell,
2018-11-01, 23:42
- Genome complexity: 3-D DNA contortions ad complexity -
David Turell,
2018-11-03, 18:01
- Genome complexity: 3-D DNA contortions ad complexity -
dhw,
2018-11-04, 12:33
- Genome complexity: 3-D DNA contortions ad complexity - David Turell, 2018-11-04, 18:35
- Genome complexity: 3-D DNA contortions ad complexity -
dhw,
2018-11-04, 12:33
- Genome complexity: 3-D DNA contortions ad complexity -
David Turell,
2018-11-03, 18:01
- Genome complexity: protecting DNA integrity in reproduction -
David Turell,
2018-11-04, 15:00
- Genome complexity: controlling DNA in the cell -
David Turell,
2018-11-04, 19:52
- Genome complexity: controlling DNA in the cell -
dhw,
2018-11-05, 10:03
- Genome complexity: controlling DNA in the cell -
David Turell,
2018-11-05, 20:20
- Genome complexity: controlling DNA in the cell -
dhw,
2018-11-06, 08:33
- Genome complexity: controlling DNA in the cell -
David Turell,
2018-11-06, 14:50
- Genome complexity: controlling DNA in the cell -
dhw,
2018-11-07, 12:17
- Genome complexity: controlling DNA in the cell -
David Turell,
2018-11-07, 18:43
- Genome complexity: controlling DNA in the cell -
dhw,
2018-11-08, 11:41
- Genome complexity: controlling DNA in the cell -
David Turell,
2018-11-08, 18:20
- Genome complexity: controlling DNA in the cell -
dhw,
2018-11-09, 12:39
- Genome complexity: controlling DNA in the cell -
David Turell,
2018-11-09, 15:25
- Genome complexity: DNA 3-D importance -
David Turell,
2018-11-09, 23:49
- Genome complexity: DNA 3-D importance in replication -
David Turell,
2019-01-01, 18:03
- Genome complexity: DNA 3-D importance in replication -
dhw,
2019-01-02, 12:09
- Genome complexity: DNA 3-D importance in replication -
David Turell,
2019-01-02, 15:09
- Genome complexity: DNA 3-D importance in replication -
dhw,
2019-01-03, 10:10
- Genome complexity: DNA 3-D importance in replication -
David Turell,
2019-01-03, 19:03
- Genome complexity: DNA tiny part of the controls -
David Turell,
2019-01-03, 19:35
- Genome complexity: control of DNA in embryology - David Turell, 2019-01-03, 23:07
- Genome complexity: DNA 3-D importance in replication -
dhw,
2019-01-04, 13:22
- Genome complexity: DNA 3-D importance in replication -
David Turell,
2019-01-04, 15:35
- Genome complexity: DNA 3-D importance in replication -
dhw,
2019-01-05, 12:40
- Genome complexity: DNA 3-D importance in replication -
David Turell,
2019-01-05, 15:03
- Genome complexity: DNA 3-D importance in replication -
dhw,
2019-01-06, 10:39
- Genome complexity: DNA 3-D importance in replication - David Turell, 2019-01-06, 15:50
- Genome complexity: DNA 3-D importance in replication -
dhw,
2019-01-06, 10:39
- Genome complexity: DNA 3-D importance in replication -
David Turell,
2019-01-05, 15:03
- Genome complexity: DNA 3-D importance in replication -
dhw,
2019-01-05, 12:40
- Genome complexity: DNA 3-D importance in replication -
David Turell,
2019-01-04, 15:35
- Genome complexity: DNA tiny part of the controls -
David Turell,
2019-01-03, 19:35
- Genome complexity: DNA 3-D importance in replication -
David Turell,
2019-01-03, 19:03
- Genome complexity: DNA 3-D importance in replication -
dhw,
2019-01-03, 10:10
- Genome complexity: DNA 3-D importance in replication -
David Turell,
2019-01-02, 15:09
- Genome complexity: chromatin makes DNA 3-D setup -
David Turell,
2020-01-10, 21:37
- Genome complexity: how so few genes make us so complex -
David Turell,
2020-01-15, 19:40
- Genome complexity:cells control degree of gene expression -
David Turell,
2020-01-16, 20:35
- Genome complexity: more about transposons role -
David Turell,
2021-02-22, 19:57
- Genome complexity: more about transposons role -
David Turell,
2021-05-12, 20:48
- Genome complexity: How butterfly wings are made - David Turell, 2022-10-22, 17:27
- Genome complexity: more about transposons role -
David Turell,
2021-05-12, 20:48
- Genome complexity: more about transposons role -
David Turell,
2021-02-22, 19:57
- Genome complexity:cells control degree of gene expression -
David Turell,
2020-01-16, 20:35
- Genome complexity: how so few genes make us so complex -
David Turell,
2020-01-15, 19:40
- Genome complexity: DNA 3-D importance in replication -
dhw,
2019-01-02, 12:09
- Genome complexity: DNA 3-D importance in replication -
David Turell,
2019-01-01, 18:03
- Genome complexity: DNA 3-D importance -
David Turell,
2018-11-09, 23:49
- Genome complexity: controlling DNA in the cell -
David Turell,
2018-11-09, 15:25
- Genome complexity: controlling DNA in the cell -
dhw,
2018-11-09, 12:39
- Genome complexity: controlling DNA in the cell -
David Turell,
2018-11-08, 18:20
- Genome complexity: controlling DNA in the cell -
dhw,
2018-11-08, 11:41
- Genome complexity: controlling DNA in the cell -
David Turell,
2018-11-07, 18:43
- Genome complexity: controlling DNA in the cell -
dhw,
2018-11-07, 12:17
- Genome complexity: controlling DNA in the cell -
David Turell,
2018-11-06, 14:50
- Genome complexity: controlling DNA in the cell -
dhw,
2018-11-06, 08:33
- Genome complexity: controlling RNA in oocytes: -
David Turell,
2023-01-25, 16:57
- Genome complexity: controlling DNA over copying - David Turell, 2023-01-25, 21:19
- Genome complexity: controlling DNA in the cell -
David Turell,
2018-11-05, 20:20
- Genome complexity: controlling DNA in the cell -
dhw,
2018-11-05, 10:03
- Genome complexity: controlling DNA in the cell -
David Turell,
2018-11-04, 19:52
- Genome complexity: automatic mechanism to kill early cancer -
David Turell,
2018-11-01, 23:42
- Genome complexity: genes control different stress responses -
David Turell,
2018-10-03, 18:43
- Genome complexity: protecting DNA integrity -
David Turell,
2018-10-03, 15:43
- Genome complexity: HOX genes appeared early in evolution -
Balance_Maintained,
2018-09-27, 20:10
- Genome complexity: HOX genes appeared early in evolution -
David Turell,
2018-09-27, 19:48
- Genome complexity: genes and what they control -
Balance_Maintained,
2018-09-21, 04:35
- Genome complexity: genes and what they control -
David Turell,
2018-09-20, 23:39
- Genome complexity: 3 types of bees from one DNA -
David Turell,
2018-09-12, 15:11
- Genome complexity: DNA repair mechanisms -
David Turell,
2018-09-02, 18:20
- Genome complexity:4-D DNA neighborhood controls -
David Turell,
2017-10-06, 22:04
- Genome complexity:3-D DNA neighborhood controls -
David Turell,
2017-09-29, 18:59
- Genome complexity: bacterial gene fusion -
David Turell,
2017-09-08, 14:06
- Genome complexity: 3-D DNA packing -
David Turell,
2017-09-07, 13:50
- Genome complexity: 3-D DNA packing -
dhw,
2017-09-07, 10:57
- Genome complexity: 3-D DNA packing -
David Turell,
2017-09-07, 05:35
- Genome complexity: origins of DNA folding -
David Turell,
2017-08-11, 00:23
- Genome complexity:cell controls of gene expression -
David Turell,
2017-08-03, 18:04
- Genome complexity: a new RNA, circular -
David Turell,
2017-08-01, 18:35
- Genome complexity: a new RNA -
David Turell,
2013-03-04, 18:12
- Genome complexity: a new RNA -
David Turell,
2013-02-27, 18:30
- Genome complexity: RNA controls -
David Turell,
2013-02-21, 15:32
- Genome complexity: Helicase speed -
David Turell,
2013-02-21, 05:18
- Genome complexity; gene expression -
David Turell,
2013-02-18, 15:58
- Genome complexity; epigenetics -
dhw,
2013-02-14, 15:09
- Genome complexity; epigenetics -
David Turell,
2013-02-12, 21:09
- Genome complexity; new study techniques -
David Turell,
2013-02-08, 15:46
- Genome complexity; chromosome protection -
David Turell,
2013-02-07, 15:24
- Genome complexity; garbage removal -
David Turell,
2013-02-07, 14:48
- Genome complexity; epigenetic gene expression -
David Turell,
2013-02-04, 18:26
- Genome complexity; gene expression -
David Turell,
2013-02-04, 15:54
- Genome complexity; Embryology -
David Turell,
2013-01-29, 15:37
- Genome complexity; lncRNA -
David Turell,
2013-04-05, 18:34
- Genome complexity; lncRNA -
David Turell,
2013-04-25, 16:11
- Genome complexity; lncRNA - David Turell, 2013-07-10, 02:51
- Genome complexity; lncRNA -
David Turell,
2013-04-25, 16:11
- Genome complexity; Transcription factors -
David Turell,
2013-01-28, 15:57
- Genome complexity; lncRNA -
David Turell,
2013-01-25, 14:41
- Genome complexity; 4 stranded DNA -
David Turell,
2013-01-22, 21:00
- Genome complexity; another code -
David Turell,
2013-01-21, 14:53
- Genome complexity;timing copies -
David Turell,
2012-12-29, 15:19
- Genome complexity; quick DNA repair -
David Turell,
2012-12-14, 01:09
- Genome complexity; another layer -
David Turell,
2012-12-11, 18:39
- Genome complexity; another layer -
David Turell,
2012-12-11, 16:11
- Genome complexity -
David Turell,
2012-12-09, 15:04
- Genome complexity -
hyjyljyj,
2012-12-09, 13:57
- Genome complexity -
David Turell,
2012-11-21, 15:02