Quantum weirdness: tunnelling measured (Introduction)

by David Turell @, Wednesday, April 05, 2023, 01:18 (599 days ago) @ David Turell

A very difficult study achieved:

https://mail.google.com/mail/u/0/#inbox/FMfcgzGsltKdHNkTXkQWNZXZjgMvzTTh

"Now, in a new study published in Nature, scientists have managed to spot quantum tunneling in what classical physics would deem an impossible reaction between hydrogen molecules and deuterium ions—heavy, charged versions of hydrogen. This is the first time that researchers have managed to experimentally confirm a theoretical prediction about the rate of tunneling in a reaction involving ions. “Quantum mechanics in theory should be able to predict this [rate] very well,” says physicist Stephan Schlemmer of the University of Cologne in Germany, who was not involved in the study. “But nobody was sure whether this was really true.”

***

"The reaction between hydrogen gas and deuterium ions is simple enough that it’s possible to predict the reaction rate with quantum mechanics alone. That is why Wester’s team chose to study this reaction: the researchers could actually check theory against reality. In the reaction, a molecule of hydrogen gas collides with one deuterium ion to produce a hydrogen ion and a heavy, deuterium-containing hydrogen molecule. But when theoretical physicist Viatcheslav Kokoouline of the University of Central Florida and his colleagues crunched the numbers in 2018, they predicted a reaction rate that was hundreds of times lower than the upper-limit estimate that was previously measured by Wester’s team.

“'[The results] disagreed so much with the experiments, we didn’t want to publish,” Kokoouline says. Worried that they had made a mistake, he and his colleagues repeated their calculation using three different theoretical methods and got the same result. It was certainly possible that the calculations were wrong, but “we tried our best, and this is the number we [could] provide,” says Kokoouline’s former student Isaac Yuen, who is now a theoretical physicist at Kansas State University.

“'[The results] disagreed so much with the experiments, we didn’t want to publish,” Kokoouline says. Worried that they had made a mistake, he and his colleagues repeated their calculation using three different theoretical methods and got the same result. It was certainly possible that the calculations were wrong, but “we tried our best, and this is the number we [could] provide,” says Kokoouline’s former student Isaac Yuen, who is now a theoretical physicist at Kansas State University.

"The problem was the reaction’s extremely slow rate, which took the Innsbruck team about 15 years of troubleshooting and tinkering to finally measure accurately. To do it, the researchers trapped deuterium ions in a cage of electric fields, flushed them with hydrogen gas and cooled everything down to an extremely chilly 15 kelvins. At temperatures that cold, the hydrogen and deuterium lacked the energy to react without tunneling. After waiting for about 15 minutes, the scientists measured how many hydrogen ions had been produced to find the reaction rate.

***

"Tunneling reactions between ions such as this one are thought to be important for chemical synthesis in the diffuse, interstellar soup of ionized gas that provides the raw material for new star systems. Because the interstellar medium is so cold, classical reactions are very slow, but tunneling is more likely—particles move past each other more slowly at low temperatures, which ups the odds of tunneling.

***

Here on Earth, capturing this tiny tunneling rate for the first time shows that physicists are on the right track with their quantum molecular theories. And it provides a benchmark for testing future theoretical efforts to unite chemistry and quantum mechanics. “[In] our regular world of classical particles, reactions can be understood with some very simple concepts,” Schlemmer says. "But this tunneling is just a completely different world. And measurements like this open this world to us.'”

Comment: quantum world is weird as ever but becoming more well understood and useful. I still see quantum mechanics as the basis of the universe itself. To view it an old way: not turtles, but quantum activity all the way down.


Complete thread:

 RSS Feed of thread

powered by my little forum