Cell complexity (Introduction)
The Central Dogma is the current basis for Darwinism. With cell systems research it is an inadequate explanation of how life really works. as I have predicted, the complexity is overwhelming, and not the straightline simplicity of the Central Dogma. Shapiro has told us this.-"Because of its simplicity, the central dogma has the tantalizing allure of deduction: If one accepts the premises (that DNA encodes mRNA, and mRNA, protein), it seems one cannot deny the conclusions (that genes are the blueprint for life). As a result, the central dogma has guided research into causes of disease and phenotype, as well as constituted the basis for the tools used in the laboratory to interrogate these causes for the past half century. The past decade, however, has witnessed a rapid accumulation of evidence that challenges the linear logic of the central dogma. Four previously unassailable beliefs about the genome—that it is static throughout the life of the organism; that it is invariant between cell type and individual2...4; that changes occurring in somatic cells cannot be inherited (also known as Lamarckian evolution5); and that necessary and sufficient information for cellular function is contained in the gene sequence—have all been called into question in the last few years. Revelations of similar scale have occurred in the transcriptome, with the discovery of the ubiquity (and variety) of mRNA splicing.6 So too with the proteome, which has undergone perhaps the most dramatic shift in understanding as a result of the aforementioned changes to the transcriptome and the genome, as well as by the explosion of technology development that has enabled both quantitative and qualitative analysis of large groups of proteins and their modifications in a single experiment. It is now clear that information flows multidirectionally between different tiers of biological information, of which genes, transcripts, and proteins constitute only the most obvious 3. The ostensible fourth step in the central dogma—how molecules "encode" cells— clearly lacks the crystalline formulas that relate DNA to protein. Although molecular details have been revealed for thousands of cellular events, no model exists that can explain how, for example, the modest erythrocyte is formed without error 2 million times per second in adult Homo sapiens. In contrast to a blueprint that can perfectly describe how to assemble a motorcycle or to build a city, we lack the knowledge to explain how a cell forms with correct processes operational, cellular structures formed, and signaling mechanisms in place. It is in attempting to extend the central dogma beyond proteins that one realizes the logic of biological systems and engineered ones are fundamentally different.7 Just as the central dogma did for the investigation of basic and medical biological problems, a new synthesis for how cells form and function will result in philosophical shifts in research, as well as technological breakthroughs to enable it."-http://circgenetics.ahajournals.org/content/suppl/2011/11/08/4.5.576.DC1/HCG200254.pdf- These folks are still not thinking about Intelligent Design, hanging on to a belief in chance.
Complete thread:
- Cell complexity -
David Turell,
2012-11-09, 15:26
- Cell complexity -
David Turell,
2012-11-23, 15:15
- Cell complexity -
David Turell,
2012-12-04, 15:22
- Cell complexity:cell entry -
David Turell,
2013-02-27, 19:30
- Cell complexity:mitochondria release energy -
David Turell,
2013-06-30, 00:53
- Cell complexity: Golgi apparatus function -
David Turell,
2013-12-20, 15:58
- Cell complexity: Golgi apparatus function -
David Turell,
2013-12-20, 18:58
- Cell complexity: Sensing stress -
David Turell,
2013-12-20, 19:06
- Cell complexity: working molecules -
David Turell,
2013-12-23, 15:39
- Cell complexity: working molecules -
David Turell,
2014-05-15, 15:40
- Cell complexity: phospholipids -
David Turell,
2014-10-07, 15:29
- Cell complexity: study of one molecule -
David Turell,
2014-12-10, 15:20
- Cell complexity: study of another molecule -
David Turell,
2014-12-10, 18:42
- Cell complexity: cell division control -
David Turell,
2014-12-10, 19:15
- Cell complexity: enzyme heat control -
David Turell,
2014-12-10, 19:22
- Cell complexity: ion channels -
David Turell,
2014-12-12, 14:28
- Cell complexity: nucular pores -
David Turell,
2014-12-12, 18:00
- Cell complexity: a new book -
David Turell,
2014-12-17, 15:38
- Cell complexity: a new book -
David Turell,
2014-12-17, 15:58
- Cell complexity: tubulin activity and microtubules -
David Turell,
2015-01-01, 21:40
- Cell complexity: dynein movement explained -
David Turell,
2015-01-13, 00:49
- Cell complexity: control of RNA -
David Turell,
2015-01-19, 14:30
- Cell complexity: membrane ingestion -
David Turell,
2015-01-19, 15:34
- Cell complexity: enzyme complexity -
David Turell,
2015-05-12, 00:02
- Cell complexity: liquid phase separation -
David Turell,
2015-10-06, 20:39
- Cell complexity: sensing leucine -
David Turell,
2015-10-08, 18:10
- Cell complexity: speed of reactions -
David Turell,
2015-10-09, 22:31
- Cell complexity: speed of reactions -
dhw,
2015-10-10, 12:02
- Cell complexity: speed of reactions -
David Turell,
2015-10-10, 15:01
- Cell complexity: speed of reactions -
dhw,
2015-10-11, 12:20
- Cell complexity: speed of reactions -
David Turell,
2015-10-11, 14:56
- Cell complexity: speed of reactions -
dhw,
2015-10-12, 12:58
- Cell complexity: speed of reactions -
David Turell,
2015-10-12, 14:18
- Cell complexity: speed of reactions -
dhw,
2015-10-13, 12:00
- Cell complexity: speed of reactions -
David Turell,
2015-10-13, 14:11
- Cell complexity: speed of reactions -
dhw,
2015-10-14, 12:07
- Cell complexity: speed of reactions -
David Turell,
2015-10-14, 15:17
- Cell complexity: speed of reactions -
dhw,
2015-10-15, 11:41
- Cell complexity: speed of reactions - David Turell, 2015-10-16, 01:19
- Cell complexity: speed of reactions -
dhw,
2015-10-15, 11:41
- Cell complexity: speed of reactions -
David Turell,
2015-10-14, 15:17
- Cell complexity: speed of reactions -
dhw,
2015-10-14, 12:07
- Cell complexity: speed of reactions -
David Turell,
2015-10-13, 14:11
- Cell complexity: speed of reactions -
dhw,
2015-10-13, 12:00
- Cell complexity: speed of reactions -
David Turell,
2015-10-12, 14:18
- Cell complexity: speed of reactions -
dhw,
2015-10-12, 12:58
- Cell complexity: speed of reactions -
David Turell,
2015-10-11, 14:56
- Cell complexity: speed of reactions -
dhw,
2015-10-11, 12:20
- Cell complexity: speed of reactions -
David Turell,
2015-10-10, 15:01
- Cell complexity: speed of reactions -
dhw,
2015-10-10, 12:02
- Cell complexity: speed of reactions -
David Turell,
2015-10-09, 22:31
- Cell complexity: liquid phase separation -
David Turell,
2018-11-27, 00:00
- Cell complexity: liquid phase separation - David Turell, 2018-11-30, 00:19
- Cell complexity: sensing leucine -
David Turell,
2015-10-08, 18:10
- Cell complexity: DNA supply control enzyme complexity -
David Turell,
2018-02-21, 01:48
- Cell complexity: they 'think' through chemical processes -
David Turell,
2018-05-05, 22:09
- Cell complexity: they 'think' through chemical processes -
dhw,
2018-05-06, 12:31
- Cell complexity: they 'think' through chemical processes -
David Turell,
2018-05-06, 15:19
- Cell complexity: they 'think' through chemical processes -
dhw,
2018-05-07, 12:29
- Cell complexity: they 'think' through chemical processes -
David Turell,
2018-05-07, 14:50
- Cell complexity: talking through microtubules -
David Turell,
2018-05-08, 00:28
- Cell complexity: stimulus causes protein signalling - David Turell, 2018-05-08, 00:51
- Cell complexity: talking through microtubules -
dhw,
2018-05-08, 11:26
- Cell complexity: talking through microtubules -
David Turell,
2018-05-08, 21:57
- Cell complexity: talking through microtubules -
dhw,
2018-05-09, 12:47
- Cell complexity: talking through microtubules -
David Turell,
2018-05-09, 18:00
- Cell complexity: talking through microtubules -
dhw,
2018-05-10, 14:02
- Cell complexity: talking through microtubules -
David Turell,
2018-05-10, 18:18
- Cell complexity: talking through microtubules -
dhw,
2018-05-11, 12:01
- Cell complexity: talking through microtubules -
David Turell,
2018-05-11, 15:04
- Cell complexity: how mitochondria maintain DNA -
David Turell,
2018-05-11, 18:19
- Cell complexity: an enzymes multiple functions -
David Turell,
2018-05-19, 02:17
- Cell complexity: an enzymes multiple functions - dhw, 2018-05-19, 09:56
- Cell complexity: ATPase multiple functions -
David Turell,
2019-08-22, 06:13
- Cell complexity: mechanism of mitochondrial repair -
David Turell,
2020-04-03, 00:40
- Cell complexity: molecular binding controls -
David Turell,
2022-01-25, 20:28
- Cell complexity: producing while under constant repair -
David Turell,
2022-12-24, 15:34
- Cell complexity: formation of the centriole - David Turell, 2024-04-11, 14:55
- Cell complexity: producing while under constant repair -
David Turell,
2022-12-24, 15:34
- Cell complexity: molecular binding controls -
David Turell,
2022-01-25, 20:28
- Cell complexity: mechanism of mitochondrial repair -
David Turell,
2020-04-03, 00:40
- Cell complexity: an enzymes multiple functions -
David Turell,
2018-05-19, 02:17
- Cell complexity: how mitochondria maintain DNA -
David Turell,
2018-05-11, 18:19
- Cell complexity: talking through microtubules -
David Turell,
2018-05-11, 15:04
- Cell complexity: talking through microtubules -
dhw,
2018-05-11, 12:01
- Cell complexity: talking through microtubules -
David Turell,
2018-05-10, 18:18
- Cell complexity: talking through microtubules -
dhw,
2018-05-10, 14:02
- Cell complexity: talking through microtubules -
David Turell,
2018-05-09, 18:00
- Cell complexity: talking through microtubules -
dhw,
2018-05-09, 12:47
- Cell complexity: talking through microtubules -
David Turell,
2018-05-08, 21:57
- Cell complexity: talking through microtubules -
David Turell,
2018-05-08, 00:28
- Cell complexity: they 'think' through chemical processes -
David Turell,
2018-05-07, 14:50
- Cell complexity: they 'think' through chemical processes -
dhw,
2018-05-07, 12:29
- Cell complexity: they 'think' through chemical processes -
David Turell,
2018-05-06, 15:19
- Cell complexity: they 'think' through chemical processes -
dhw,
2018-05-06, 12:31
- Cell complexity: they 'think' through chemical processes -
David Turell,
2018-05-05, 22:09
- Cell complexity: liquid phase separation -
David Turell,
2015-10-06, 20:39
- Cell complexity: enzyme complexity -
David Turell,
2015-05-12, 00:02
- Cell complexity: membrane ingestion -
David Turell,
2015-01-19, 15:34
- Cell complexity: control of RNA -
David Turell,
2015-01-19, 14:30
- Cell complexity: dynein movement explained -
David Turell,
2015-01-13, 00:49
- Cell complexity: tubulin activity and microtubules -
David Turell,
2015-01-01, 21:40
- Cell complexity: a new book -
David Turell,
2014-12-17, 15:58
- Cell complexity: a new book -
David Turell,
2014-12-17, 15:38
- Cell complexity: nucular pores -
David Turell,
2014-12-12, 18:00
- Cell complexity: ion channels -
David Turell,
2014-12-12, 14:28
- Cell complexity: enzyme heat control -
David Turell,
2014-12-10, 19:22
- Cell complexity: cell division control -
David Turell,
2014-12-10, 19:15
- Cell complexity: study of another molecule -
David Turell,
2014-12-10, 18:42
- Cell complexity: study of one molecule -
David Turell,
2014-12-10, 15:20
- Cell complexity: phospholipids -
David Turell,
2014-10-07, 15:29
- Cell complexity: working molecules -
David Turell,
2014-05-15, 15:40
- Cell complexity: working molecules -
David Turell,
2013-12-23, 15:39
- Cell complexity: Sensing stress -
David Turell,
2013-12-20, 19:06
- Cell complexity: Golgi apparatus function -
David Turell,
2013-12-20, 18:58
- Cell complexity:mitochondrial protein supply controls - David Turell, 2018-04-16, 20:47
- Cell complexity: Golgi apparatus function -
David Turell,
2013-12-20, 15:58
- Cell complexity:mitochondria release energy -
David Turell,
2013-06-30, 00:53
- Cell complexity:cell entry -
David Turell,
2013-02-27, 19:30
- Cell complexity -
David Turell,
2012-12-04, 15:22
- Cell complexity -
David Turell,
2012-11-23, 15:15