Cosmology; new studies of universe's magnetic fields (Introduction)

by David Turell @, Thursday, July 02, 2020, 19:53 (1387 days ago) @ David Turell

No new advanced theories of the origin of the magnetic fields in the universe, but increased study is occurring:

https://www.quantamagazine.org/the-hidden-magnetic-universe-begins-to-come-into-view-20...

"Twenty years ago, astronomers started to detect magnetism permeating entire galaxy clusters, including the space between one galaxy and the next. Invisible field lines swoop through intergalactic space like the grooves of a fingerprint.

"Last year, astronomers finally managed to examine a far sparser region of space — the expanse between galaxy clusters. There, they discovered the largest magnetic field yet: 10 million light-years of magnetized space spanning the entire length of this “filament” of the cosmic web. A second magnetized filament has already been spotted elsewhere in the cosmos by means of the same techniques. “We are just looking at the tip of the iceberg, probably,” said Federica Govoni of the National Institute for Astrophysics in Cagliari, Italy, who led the first detection.

"The question is: Where did these enormous magnetic fields come from?

***

"One possibility is that cosmic magnetism is primordial, tracing all the way back to the birth of the universe. In that case, weak magnetism should exist everywhere, even in the “voids” of the cosmic web — the very darkest, emptiest regions of the universe. The omnipresent magnetism would have seeded the stronger fields that blossomed in galaxies and clusters.

***

"The problem at the heart of the Hubble tension is that the universe seems to be expanding significantly faster than expected based on its known ingredients. In a paper posted online in April and under review with Physical Review Letters, the cosmologists Karsten Jedamzik and Levon Pogosian argue that weak magnetic fields in the early universe would lead to the faster cosmic expansion rate seen today.

"Primordial magnetism relieves the Hubble tension so simply that Jedamzik and Pogosian’s paper has drawn swift attention. “This is an excellent paper and idea,” said Marc Kamionkowski, a theoretical cosmologist at Johns Hopkins University who has proposed other solutions to the Hubble tension.

***

"If these magnetic fields arose in the infant universe, the question becomes: How?"

***

“'I thought, wow,” Pogosian said, “this could be pointing us to [magnetic fields’] actual presence. So I wrote Karsten immediately.” The two got together in Montpellier in February, just before the lockdown. Their calculations indicated that, indeed, the amount of primordial magnetism needed to address the Hubble tension also agrees with the blazar observations and the estimated size of initial fields needed to grow the enormous magnetic fields spanning galaxy clusters and filaments. “So it all sort of comes together,” Pogosian said, “if this turns out to be right.'”

Comment: The content of this article describes much of the recent studies and theoretical ideas. It is a work in progress


Complete thread:

 RSS Feed of thread

powered by my little forum