New Extremophiles: ocean floor three kilometers down (Introduction)

by David Turell @, Friday, March 06, 2020, 20:10 (1723 days ago) @ David Turell

A branch of the Chlamydia family:

https://phys.org/news/2020-03-chlamydia-related-bacteria-deep-arctic-ocean.html

"Chlamydia and related bacteria, collectively called Chlamydiae, and all studied members of this group depend on interactions with other organisms to survive. Chlamydiae specifically interact with organisms such as animals, plants and fungi, and including microscopic organisms like amoeba, algae and plankton. Chlamydiae spend a large part of their lives inside the cells (also one cell?) of their hosts, humans, but also of koala bears. Most knowledge about Chlamydiae is based on studies of pathogenic lineages in the lab. But do Chlamydiae also exist in other environments? The new research published in Current Biology shows that Chlamydiae can be found in the most unexpected of places.

"An international group of researchers report the discovery of numerous new species of Chlamydiae growing in deep Arctic Ocean sediments, in absence of any obvious host organisms. The researchers had been exploring microbes that live over 3 km below the ocean surface and several meters into the ocean seafloor sediment during an expedition to Loki's Castle, a deep-sea hydrothermal vent field located in the Arctic Ocean in-between Iceland, Norway, and Svalbard. This environment is devoid of oxygen and macroscopic life forms. Unexpectedly, the research team came across highly abundant and diverse relatives of Chlamydia. "Finding Chlamydiae in this environment was completely unexpected, and of course begged the question what on earth were they doing there?"

***

"Unfortunately, the researchers have as of yet been unable to grow these Chlamydiae or take images of them. "Even if these Chlamydiae are not associated with a host organism, we expect that they require compounds from other microbes living in the marine sediments. Additionally, the environment they live in is extreme, without oxygen and under high pressure, this makes growing them a challenge," explains Thijs Ettema. Nevertheless, the discovery of Chlamydiae in this unexpected environment challenges the current understanding of the biology of this ancient group of bacteria, and hints that additional Chlamydiae are awaiting to be discovered. "

Comment: The bush of life grows and most likely is vastly underestimated. The earliest bacterial life forms indicate how the start of life was built on them and they are still playing a very important vital role. We can't without them.


Complete thread:

 RSS Feed of thread

powered by my little forum