New Extremophiles: possible means of evolution (Introduction)
New studies on one form suggest ways they may have evolved to less extreme environments. Most extremophiles are archaea and relate to original life:
https://www.sciencedaily.com/releases/2018/01/180126085437.htm
"Extremophiles -- hardy organisms living in places that would kill most life on Earth -- provide fascinating insights into evolution, metabolism and even possible extraterrestrial life. A new study provides insights into how one type of extremophile, a heat-loving microbe that uses ammonia for energy production, may have been able to make the transition from hot springs to more moderate environments across the globe. The first-ever analysis of DNA of a contemporary heat-loving, ammonia-oxidizing organism, published in open-access journal Frontiers in Microbiology, reveals that evolution of the necessary adaptations may have been helped by highly mobile genetic elements and DNA exchange with a variety of other organisms.
***
"Only one branch, Thaumarchaeota, has managed to colonize very successfully the Earth's more hospitable places -- but scientists don't know why.
"Thaumarchaeota are found in very large numbers in virtually all environments, including the oceans, soils, plant leaves and the human skin," says Professor Christa Schleper from the University of Vienna, Austria, who guided and initiated the study. "We want to know what their secret is: billions of years ago, how did they adapt from hot springs, where it seems all archaea evolved, to more moderate habitats?"
"As a starting point to answer this question, Professor Schleper and her team isolated a Thaumarchaeota species from a hot spring in Italy then sequenced and analyzed its genome. This represents the first genome analysis of the Nitroscaldus lineage -- a subgroup of heat-loving Thaumarchaeota that get their energy by oxidizing ammonia into nitrite.
"The analysis revealed that the organism, Candidatus Nitrosocaldus cavascurensis, seems to represent the closest-related lineage to the last common ancestor of all Thaumarchaeota. Intriguingly, it has highly mobile DNA elements and seems to have frequently exchanged DNA with other organisms -- including other archaea, viruses and possibly even bacteria.
"The ability to exchange genetic material could help this archaeon to rapidly evolve. "This organism seems prone to lateral gene transfer and invasion by foreign DNA elements," says Professor Schleper. "Such mechanisms may have also helped the ancestral lines of Thaumarchaeota to evolve and eventually radiate into moderate environments -- and N. cavascurensis may still be evolving through genetic exchange with neighboring organisms in its hot spring."
"Many researchers assume that the first life forms on Earth evolved in hot springs. Further studies of this thermophile archaeon might help identify general mechanisms that enabled the first living cells, both bacteria and archaea, to conquer the world."
Comment: Hot springs and hot vents in oceans certainly are appealing as points of origin of life, and the possibility horizontal gene transfer plays a major role in evolution at this stage, as suggested by this study, is intriguing. See this:
https://cosmosmagazine.com/biology/did-extremophiles-move-into-less-nasty-habitats-by-h...
"The team found that N. cavascurensis is most closely related to the last common ancestor of all Thaumarchaeota, a position in the lineage that can provide crucial information into the evolution of early life. Importantly, N. cavascurensis displays various features that are not typical of thermophilic archaea, including the integrated DNA of an ancient virus (known as a provirus), indicating an evolutionary move toward more moderate environments.
"N. cavascurensis’ genome also contains numerous mobile genetic elements that are implicated in “lateral gene transfer”, which is the movement of genetic material between existing organisms, rather than from parent to offspring, and this provides a clue to how they spread beyond extreme environments.
“'This organism seems prone to lateral gene transfer and invasion by foreign DNA elements,” says Schleper. “Such mechanisms may have also helped the ancestral lines of Thaumarchaeota to evolve and eventually radiate into moderate environments – and N. cavascurensis may still be evolving through genetic exchange with neighbouring organisms in its hot spring.'”
Comment: How much of the evolution of early life was by chance Darwinian mutation? Horizontal gene transfer could be God manipulating the mechanism.
Complete thread:
- New Extremeophiles -
David Turell,
2011-06-03, 15:25
- New Extremeophiles -
David Turell,
2011-07-06, 01:48
- New Extremeophiles: Antarctica - David Turell, 2013-02-14, 23:01
- New Extremeophiles -
David Turell,
2013-04-05, 19:36
- New Extremeophiles -
David Turell,
2013-10-10, 20:26
- New Extremeophiles: early life -
David Turell,
2014-10-25, 15:10
- New Extremeophiles: live on sulfates -
David Turell,
2015-01-17, 14:21
- New Extremeophiles: 13,000 feet deep in Pacific -
David Turell,
2016-12-21, 14:57
- New Extremeophiles: living on electrons -
David Turell,
2016-12-31, 01:25
- New Extremeophiles: living on electrons -
dhw,
2016-12-31, 13:09
- New Extremeophiles: living on electrons -
David Turell,
2016-12-31, 15:35
- New Extremeophiles: four examples -
David Turell,
2017-06-05, 14:29
- New Extremeophiles: four examples -
dhw,
2017-06-06, 14:48
- New Extremeophiles: four examples - David Turell, 2017-06-06, 17:24
- New Extremophiles: possible means of evolution - David Turell, 2018-01-30, 15:50
- New Extremeophiles: antarctic insects -
David Turell,
2020-04-15, 22:54
- New Extremophiles: under antarctic ice in lakes -
David Turell,
2020-07-20, 18:33
- New Extremophiles: Arctic snails! -
David Turell,
2020-07-21, 01:20
- New Extremophiles: Arctic snails! -
dhw,
2020-07-21, 12:53
- New Extremophiles: Arctic snails! - David Turell, 2020-07-21, 15:00
- New Extremophiles: Arctic snails! -
dhw,
2020-07-21, 12:53
- New Extremophiles: Arctic snails! -
David Turell,
2020-07-21, 01:20
- New Extremophiles: under antarctic ice in lakes -
David Turell,
2020-07-20, 18:33
- New Extremeophiles: four examples -
dhw,
2017-06-06, 14:48
- New Extremeophiles: living on electrons -
David Turell,
2017-09-08, 22:04
- New Extremophiles: living by expelling electrons to rocks - David Turell, 2018-03-31, 01:51
- New Extremophiles: living in lakes under miles of ice -
David Turell,
2019-01-16, 04:13
- Old Extremophiles: using arsenic for energy -
David Turell,
2019-05-05, 01:44
- Old Extremophiles: using arsenic for energy - David Turell, 2021-01-01, 15:31
- New Extremophiles: ocean floor three kilometers down -
David Turell,
2020-03-06, 20:10
- New Extremophiles: ocean floor three kilometers down - David Turell, 2020-04-03, 00:52
- Old Extremophiles: using arsenic for energy -
David Turell,
2019-05-05, 01:44
- Useful Extremeophiles: living on hydrogen - David Turell, 2020-04-05, 19:28
- New Extremeophiles: living at extreme heat -
David Turell,
2020-12-06, 00:15
- New Extremeophiles: living under glaciers -
David Turell,
2020-12-22, 19:05
- New Extremophiles: living in lava tubes -
David Turell,
2021-07-28, 15:39
- New Extremophiles: living under Antarctic ice -
David Turell,
2021-12-20, 19:35
- New Extremophiles: ocean bottom dwellers make own oxygen -
David Turell,
2022-01-12, 00:18
- New Extremophiles: so many ocean bottom dwellers -
David Turell,
2022-02-06, 15:09
- New Extremophiles: so many ocean bottom dwellers - dhw, 2022-02-07, 07:23
- New Extremophiles: a few more - David Turell, 2022-06-06, 14:52
- New Extremophiles: crustal grit - David Turell, 2023-07-12, 19:48
- New Extremophiles: dark ocean dwellers - David Turell, 2023-07-15, 13:09
- New Extremophiles: sopping up water in a desert -
David Turell,
2023-10-30, 19:35
- New Extremophiles: bacteria living on phosphorus. -
David Turell,
2023-11-12, 18:03
- New Extremophiles: more in deep sea crevices - David Turell, 2024-10-15, 20:20
- New Extremophiles: bacteria living on phosphorus. -
David Turell,
2023-11-12, 18:03
- New Extremophiles: so many ocean bottom dwellers -
David Turell,
2022-02-06, 15:09
- New Extremophiles: ocean bottom dwellers make own oxygen -
David Turell,
2022-01-12, 00:18
- New Extremophiles: living under Antarctic ice -
David Turell,
2021-12-20, 19:35
- New Extremophiles: living in lava tubes -
David Turell,
2021-07-28, 15:39
- New Extremeophiles: living under glaciers -
David Turell,
2020-12-22, 19:05
- New Extremeophiles: four examples -
David Turell,
2017-06-05, 14:29
- New Extremeophiles: living on electrons -
David Turell,
2016-12-31, 15:35
- New Extremeophiles: living on electrons -
dhw,
2016-12-31, 13:09
- New Extremeophiles: living on electrons -
David Turell,
2016-12-31, 01:25
- New Extremeophiles: 13,000 feet deep in Pacific -
David Turell,
2016-12-21, 14:57
- New Extremeophiles: live on sulfates -
David Turell,
2015-01-17, 14:21
- New Extremeophiles: early life -
David Turell,
2014-10-25, 15:10
- New Extremeophiles -
David Turell,
2013-10-10, 20:26
- New Extremeophiles -
David Turell,
2011-07-06, 01:48