Epigenetics: DNA markers (Introduction)

by David Turell @, Tuesday, February 10, 2015, 19:34 (3575 days ago) @ David Turell

There are research systems for finding them:-"Researchers at the FMI in Basel have now investigated the mechanisms that underlie the epigenetic marking of the genome. Three enzymes, known as DNA methyltransferases (DNMTs), can tag DNA with methyl groups: in this process, DNMT3A and DNMT3B create new methylation patterns, while DNMT1 ensures that the pattern established is propagated through each cell division.-"The team of epigeneticists led by FMI Group Leader and University of Basel Professor Dirk Schübeler, demonstrated how these methylation patterns are established. Lead author Tuncay Baubec comments: "Our studies indicate that the placement of epigenetic modifications follows defined rules. Certain patterns in the DNA sequence together with genetic activity influence where the DNMTs can bind in the genome. This in turn explains the methylation patterns that arise. In this case, one can argue that genes can determine for themselves whether they become methylated or not."-"And what about the great potential of epigenetics? Schübeler explains: "The fact that methylation patterns are largely genetically determined does not surprise us. We're glad that we now have a better understanding of the interplay between DNA sequence and methylation. This allows us to recognize where these modifications actually play a role. In addition, methylation patterns are very valuable. For example, in identifying different cell conditions. They are excellent tools for distinguishing different stages of disease, or for monitoring the effectiveness of treatment. But it's time to forget the simple notion that these markings are independent of the underlying DNA sequence.'"-http://medicalxpress.com/news/2015-02-genetic-epigenetics.html-This may be a part of an inventive mechanism. Note the authors reference tight gene control of this mechanism.


Complete thread:

 RSS Feed of thread

powered by my little forum