How much can we know? (Introduction)

by David Turell @, Thursday, May 31, 2018, 21:08 (448 days ago)

There are absolute limits:

"There are clear unknowables in science—reasonable questions that, unless currently accepted laws of nature are violated, we cannot find answers to. One example is the multiverse: the conjecture that our universe is but one among a multitude of others, each potentially with a different set of laws of nature. Other universes lie outside our causal horizon, meaning that we cannot receive or send signals to them. Any evidence for their existence would be circumstantial: for example, scars in the radiation permeating space because of a past collision with a neighboring universe.

"Other examples of unknowables can be conflated into three questions about origins: of the universe, of life and of the mind. Scientific accounts of the origin of the universe are incomplete because they must rely on a conceptual framework to even begin to work: energy conservation, relativity, quantum physics, for instance. Why does the universe operate under these laws and not others?

"Similarly, unless we can prove that only one or very few biochemical pathways exist from nonlife to life, we cannot know for sure how life originated on Earth. For consciousness, the problem is the jump from the material to the subjective—for example, from firing neurons to the experience of pain or the color red. Perhaps some kind of rudimentary consciousness could emerge in a sufficiently complex machine. But how could we tell? How do we establish—as opposed to conjecture—that something is conscious?

"Paradoxically, it is through our consciousness that we make sense of the world, even if only imperfectly. Can we fully understand something of which we are a part? Like the mythic snake that bites its own tail, we are stuck within a circle that begins and ends with our lived experience of the world. We cannot detach our descriptions of reality from how we experience reality. This is the playing field where the game of science unfolds, and if we play by the rules we can see only so much of what lies beyond."

Comment: We can debate but not reach provable conclusions. Faith or no faith.

How much can we know?

by dhw, Friday, June 01, 2018, 08:08 (447 days ago) @ David Turell

DAVID's comment: We can debate but not reach provable conclusions. Faith or no faith.

A nice moment of agreement between us! We have, of course, covered this many times, notably in our discussions on epistemology.

How much can we know? the protein form/function enigma

by David Turell @, Tuesday, August 06, 2019, 19:21 (16 days ago) @ dhw

Protein form and shape creates the living functions. We have no idea how or why it works:

"In a surprising marriage of science and art, researchers have developed a system for converting the molecular structures of proteins, the basic building blocks of all living beings, into audible sound that resembles musical passages. Then, reversing the process, they can introduce some variations into the music and convert it back into new proteins never before seen in nature.


"Buehler says that after listening to the resulting melodies, he is now able to distinguish certain amino acid sequences that correspond to proteins with specific structural functions. "That's a beta sheet," he might say, or "that's an alpha helix."

"The whole concept, Buehler explains, is to get a better handle on understanding proteins and their vast array of variations. Proteins make up the structural material of skin, bone, and muscle, but are also enzymes, signaling chemicals, molecular switches, and a host of other functional materials that make up the machinery of all living things. But their structures, including the way they fold themselves into the shapes that often determine their functions, are exceedingly complicated. "They have their own language, and we don't know how it works," he says. "We don't know what makes a silk protein a silk protein or what patterns reflect the functions found in an enzyme. We don't know the code."

"By translating that language into a different form that humans are particularly well-attuned to, and that allows different aspects of the information to be encoded in different dimensions -- pitch, volume, and duration -- Buehler and his team hope to glean new insights into the relationships and differences between different families of proteins and their variations, and use this as a way of exploring the many possible tweaks and modifications of their structure and function. As with music, the structure of proteins is hierarchical, with different levels of structure at different scales of length or time.


"This way of encoding structure into music does reflect a deeper reality. "When you look at a molecule in a textbook, it's static," Buehler says. "But it's not static at all. It's moving and vibrating. Every bit of matter is a set of vibrations. And we can use this concept as a way of describing matter.'"

Comment: Reading this, design cannot be doubted.

RSS Feed of thread
powered by my little forum