Particle zoo (Introduction)
Understand quarks is a mess as new theorized combinations turn up. The mess is how do they do it?:
https://www.quantamagazine.org/impossible-particle-discovery-adds-key-piece-to-the-stro...
"The unexpected discovery of the double-charm tetraquark highlights an uncomfortable truth. While physicists know the exact equation that defines the strong force — the fundamental force that binds quarks together to make the protons and neutrons in the hearts of atoms, as well as other composite particles like tetraquarks — they can rarely solve this strange, endlessly iterative equation, so they struggle to predict the strong force’s effects.
***
"The bizarre thing about quarks is that physicists can approach them at two levels of complexity. In the 1960s, grappling with a zoo of newly discovered composite particles, they developed the cartoonish “quark model,” which simply says that quarks glom together in complementary sets of three to make the proton, the neutron and other so-called baryons, while pairs of quarks make up various types of “meson” particles.
"Gradually, though, a deeper theory known as quantum chromodynamics (QCD) emerged. It painted the proton as a seething mass of quarks roped together by tangled strings of “gluon” particles, the carriers of the strong force. Experiments have confirmed many aspects of QCD, but no known mathematical techniques can systematically unravel the theory’s central equation.
***
"Polyakov’s analysis suggested that the four quarks banded together for a glorious 12 sextillionths of a second before an energy fluctuation conjured up two extra quarks and the group disintegrated into three mesons.
"For a tetraquark, that’s an eternity. Previous tetraquarks have contained quarks paired with their equally massive opposing antiquarks, and they tended to puff into nothingness thousands of times faster. The new tetraquark’s formation and subsequent stability surprised Stone’s group, who expected charm quarks to attract each other even more weakly than the quark-antiquark pairs that bind more ephemeral tetraquarks. It’s a fresh clue to the strong force enigma.
***
"Now the LHCb experiment has made a definitive ruling: Charm quarks can bind a tetraquark together. (Only barely, though — the physicists calculate that if the composite particle had just one-hundredth of a percent more mass, two mesons would win out instead.) Now theorists have a new benchmark for their models."
Comment: Still digging up God's basic particle doings, remembering a 'particle' is really a tiny energy force field. We see how these particle complexities make matter in a perfect way, but when biochemical matter appears mistakes happen. If God can design the first step with no problems, why problems in the living step? Answer, there can be no other result.
Complete thread:
- Particle zoo -
David Turell,
2011-07-21, 14:26
- Particle zoo - David Turell, 2021-09-28, 15:52