Is science being corrupted by misinerpretation of statistics (Introduction)

by David Turell @, Saturday, March 20, 2010, 13:31 (5361 days ago)

A fascinating essay on how scientists (especially medical ones) misinterpret the use of p values, how it affects drug trials, genetic studies of gene function, etc. I'm sure Matt will not be surprised at the opinions presented.-
http://www.sciencenews.org/view/feature/id/57091/title/Odds_Are,_Its_Wrong

Is science being corrupted by misinerpretation of statistics

by xeno6696 @, Sonoran Desert, Thursday, April 08, 2010, 19:16 (5342 days ago) @ David Turell

A fascinating essay on how scientists (especially medical ones) misinterpret the use of p values, how it affects drug trials, genetic studies of gene function, etc. I'm sure Matt will not be surprised at the opinions presented.
> 
> 
> http://www.sciencenews.org/view/feature/id/57091/title/Odds_Are,_Its_Wrong-ESPECIALLY this line: -Replicating a result helps establish its validity more securely, but the common tactic of combining numerous studies into one analysis, while sound in principle, is seldom conducted properly in practice.-It is this property that underpins many global warming arguments, and has been used (in my opinion) as a cheap tactic to get published without having to do any real work. -Most of this article underlines a previous set of statements I've made in here that deal with how null-hypothesis testing works. (Or should work.) -I KNOW for a fact that a strong foundation in logic isn't part of the curriculum for any of the students in my college, and the abuse of statistics is one of the end results of this. Even I--someone trained in computer science who speaks the language of logic as a near-native speaker can get tripped up in this game. So, the fact that many people are truly untrained in its use underlines why bad science happens. -Great article David, I hope more people read it.

--
\"Why is it, Master, that ascetics fight with ascetics?\"

\"It is, brahmin, because of attachment to views, adherence to views, fixation on views, addiction to views, obsession with views, holding firmly to views that ascetics fight with ascetics.\"

Is science being corrupted by misinerpretation of statistics

by David Turell @, Monday, July 11, 2016, 14:21 (3056 days ago) @ xeno6696

Another warning essay on the deliberate presentation of statistics in a way that deceives: - https://aeon.co/ideas/how-statistics-are-twisted-to-obscure-public-understanding?utm_so... - "Mark Twain attributed to Benjamin Disraeli the famous remark: ‘There are three kinds of lies: lies, damned lies, and statistics.' In every industry, from education to healthcare to travel, the generation of quantitative data is considered important to maintain quality through competition. Yet statistics rarely show what they seem. - "If you look at recent airline statistics, you'll think that a far higher number of planes are arriving on schedule or early than ever before. But this appearance of improvement is deceptive. Airlines have become experts at appearance management: by listing flight times as 20-30 per cent longer than what the actual flight takes, flights that operate on a normal to slightly delayed schedule are still counted as arriving ‘early' or ‘on time'. A study funded by the Federal Aviation Administration refers to the airline tactic as schedule buffering. - *** - "University rankings are especially prominent: numerous publications rank universities on a variety of metrics, relying on factors such as a university's acceptance rate, average student test scores and job placement, to name a few. - "But in recent years the competition among universities has become so intense that several have admitted to dishonestly manipulating the stats. In August 2012, Emory University admitted, after an internal investigation, that the administration had misreported incoming students' test scores for a decade. And Emory was not the only culprit: in 2013, Forbes magazine removed three other major colleges from its rankings for similar infractions. The quantitative data weighed by rankings publications determine how we, ordinary people, understand phrases such as ‘the best universities'. But how can a system that rewards semantical manipulation be said to explain where students receive the best education? - "Similar problems plague the healthcare system in the United States. An important concept for ranking hospitals is ‘survivability', which the US News & World Report defines as ‘30 days after hospitalisation, adjusted for severity'. Avery Comarow, health rankings editor at US News, said in an email that ‘30-day mortality is the most common benchmarking period used by researchers, insurers and hospitals themselves for evaluating in-hospital mortality, because it recognises that a hospital is responsible for patients not just during their hospital stay but for a reasonable period after they are discharged'. - "But what if a group of patients lives only for 32 days after hospitalisation? Ordinary people do not think of ‘survival' as 30 days after any event; why should we trust a ranking system that uses such a fundamental and important notion in an unrecognisable way? Furthermore, does this definition favour hospitals that choose not to admit patients believed unlikely to live until the 30-day mark? What implicit pressures are placed on hospitals when society relies on the statistical analysis of a ranking publication as a guide to quality? - *** - "Statistics are often used to support points that aren't true, but we tend to attack only the data that conflict with some preexisting notion of our own. The numbers themselves - unless purposefully falsified - cannot lie, but they can be used to misrepresent the public statements and ranking systems we take seriously. Statistical data do not allow for lies so much as semantic manipulation: numbers drive the misuse of words. When you are told a fact, you must question how the terms within the fact are defined, and how the data have been generated. When you read a statistic, of any kind, be sure to ask how - and more importantly, why - the statistic was generated, whom it benefits, and whether it can be trusted." - Comments: In looking at scientific results that are stated in numbers, it is very important to determine how the study is modelled to determine if the result is slanted or overstated. Percentages are especially a problem since they hide the size of the initial study group. A study of ten is not as significant as a study of 1,000.

RSS Feed of thread
powered by my little forum