Cosmology: Expanding universe (Introduction)

by David Turell @, Friday, April 29, 2016, 02:18 (3109 days ago) @ David Turell

A good description of black hole theory: - http://nautil.us/issue/35/boundaries/where-nature-hides-the-darkest-mystery-of-all - "In a meaningful sense, a black hole is its event horizon, since we can't observe anything inside it by any method. The interior is nature's biggest secret, enshrouded by a barrier that lets everything in but nothing out. - "To make black holes even more enigmatic, they are also perfectly featureless, according to general relativity, our best explanation of how gravity works. They may be born from situations as different as the deaths of stars and the gravitational collapse of huge amounts of gas in the early universe, but the result is the same. Even the chemical composition of what gets sucked into and forms it is irrelevant. The only properties a black hole exhibits to the wider cosmos are its mass and how fast it's rotating. - "This result is puckishly known as the “no-hair theorem”: Whatever is going on in the interior, no “hair” sticks out of the event horizon. (The name was coined by prominent physicist John Archibald Wheeler, obviously not a man sensitive about a receding hairline.) That theorem presents a challenging conundrum: We don't know whether a black hole actually deletes its autobiography, “forgetting” its past and its progenitor's composition, or preserves it somehow in a way we don't know yet. If that information is destroyed, it's a violation of one of the principles of quantum mechanics; if it's preserved, it requires a theory beyond general relativity. - *** - "We can't penetrate the bald event horizon, but that doesn't mean we know nothing about a black hole's interior. We're pretty sure black holes don't contain a portal to another region of space (a wormhole) or another reality, whatever sci-fi may have told us. Most physicists are also reasonably certain that a full description of the interior of black holes will require quantum gravity, a theory unifying quantum physics and general relativity—or possibly a modified version of our current model of gravity. - "One hybrid approach was put together by Yakov Borisovich Zel'dovich, Jacob Bekenstein, and especially Stephen Hawking. Without a quantum theory of gravity, they used particle physics in combination with general relativity to show that the event horizon has a non-zero temperature and therefore glows, albeit very faintly. This glow is known as Hawking radiation; it arises when partnered particles—one electron and one positron, pairs of photons, etc.—are created in the intense gravitational field. One particle falls into the black hole, while the other escapes. - *** - "We see black holes like V404 Cygni by the matter surrounding them: Material stripped off companion stars, for example, heats up as it orbits the black hole, emitting strong X-ray and radio radiation. Thanks to high-resolution observations made last year, astronomers have measured swirling gas at very close orbits to the giant black hole in the galaxy M87. And the dance of stars and plasma near Sagittarius A* reveals the presence of the black hole that helps keep our galaxy together." - Comment: To weird to be real, but with the latest methods they can be identified by their meals!


Complete thread:

 RSS Feed of thread

powered by my little forum