Genome complexity: DNA enzyme controls (Introduction)

by David Turell @, Monday, October 30, 2017, 18:01 (2342 days ago) @ David Turell

Another enzyme molecule is analyzed which controls DNA expression. see the article to see how complex these enzymes can be:

https://phys.org/news/2017-10-scientists-unveil-protein-critical-gene.html

"The study, led by Dr Lori Passmore opens in new window from the MRC Laboratory of Molecular Biology, is the first to reveal the structure of an important part of the protein, called cleavage and polyadenylation factor (CPF).

"CPF is a complex enzyme made up of many subunits. Cryo-electron microscopy has revolutionised scientists' ability to discover the structure of large, flexible and complex proteins like this in their natural form.

"Dr Lori Passmore, senior author on the paper and group leader at the MRC LMB, said: "Understanding the structure and function of intact CPF, and how it is assembled, has been a central question in the field of gene expression for decades – it's such a fundamental protein but we still don't understand how it works. This was a huge technical challenge because very few structures have been built entirely from scratch using cryo-EM data. We were very excited to finally build the first atomic model of the structure of part of CPF."

"Gene expression - turning the instructions encoded in DNA into proteins - requires a number of important steps. Enzymes copy the gene and produce a single-stranded version of the DNA, called messenger RNA (mRNA).

"The mRNA can travel out of the nucleus of the cell, where the DNA is housed, to the cytoplasm where cellular machinery uses the mRNA's instructions to assemble a protein.
The CPF enzyme is a necessary part of this process – it adds a long string of adenosine molecules, called a 'poly-A tail', to the end of each new mRNA.

"This tail is important because the length of the tail specifies the amount of time that the mRNA is present in the cell, and how often it is translated into proteins. The poly-A tail is also necessary for the mRNA to be transported out of the nucleus.

"Viral infections, such as influenza, target CPF within the cell and disrupt gene expression. The researchers identified a site on CPF where a protein from the virus can bind in a way that may block CPF from interacting with mRNA, and thereby halt gene expression in the cell to the virus' advantage.

"The scientists say this structure will also help them to better understand how CPF works and how defects in poly-A tail addition contribute to diseases - including β-thalassemia, thrombophilia, and cancer."

Comment: Be sure to look at the structure. A blind Darwinian process cannot invent this sort of protein. Designer required.


Complete thread:

 RSS Feed of thread

powered by my little forum