Genome complexity: DNA 3D layer of gene control (Introduction)

by David Turell @, Friday, September 23, 2016, 19:21 (2765 days ago) @ David Turell

Another take on the recent article showing the 3-D relationships of coiled and packed
DNA strongly effect gene expression:-https://www.sciencedaily.com/releases/2016/09/160920151438.htm-"A person's DNA sequence can provide a lot of information about how genes are turned on and off, but new research out of Case Western Reserve University School of Medicine suggests the 3-D structure DNA forms as it crams into cells may provide an additional layer of gene control. As long strands of DNA twist and fold, regions far away from each other suddenly find themselves in close proximity. The revolutionary study suggests interactions between distant regions may affect how genes are expressed in certain diseases.-***-" His most recent study, published in Nature Genetics, discovered regions of DNA he termed "outside variants" that physically interact with high-risk mutations in a person's DNA sequence called single nucleotide polymorphisms, or SNPs. The outside variants suggest a new level of gene regulation and may help explain how identical SNPs can lead to different clinical outcomes.-***-"The study investigated SNPs associated with six autoimmune diseases, rheumatoid arthritis, systemic lupus, Crohn's disease, multiple sclerosis, ulcerative colitis, and celiac disease. The SNPs were previously identified through genome-wide association studies, increasingly popular research tools that search DNA sequence data for regions associated with disease. The large-scale studies tend to zero in on SNPs in "enhancer clusters" of DNA, regions known to contort and interact with disease genes. The researchers identified outside variant DNA regions that seemed to be dependent on known disease SNPs, but were found far beyond enhancer clusters normally associated with the diseases.-***-"The study provides a better understanding of how folded DNA employs distant genetic regions to control how genes are turned on or off. Three dimensional models of DNA may therefore reveal other genetic elements that can help explain the complex processes of gene control, and ultimately disease heritability. The outside variants identified in the study may also provide additional biomarkers to assess a person's risk of disease.-"'We found outside variants associated with several autoimmune-related disorders, including multiple sclerosis, Crohn's disease, and arthritis. The next step is to see if this extends to other common diseases, like heart disease and diabetes," said Scacheri, indicating his research team plans to "determine whether we can use outside variants in a diagnostic or preventive medicine setting to better identify individuals who are most at risk for developing these diseases.'"-Comment: 3-D studies of DNA are extremely important. Again raises the issue of how did DNA initially develop in early life, as a code better and more complex than any humans have invented?


Complete thread:

 RSS Feed of thread

powered by my little forum