Genome complexity: RNA has an extra letter! (Introduction)

by David Turell @, Wednesday, February 17, 2016, 06:01 (2983 days ago) @ David Turell

RNA does the translation of DNA code and modifies gene expression. a new letter for the code has been found:-https://www.sciencedaily.com/releases/2016/02/160216181447.htm-"DNA, RNA, protein -- the end. Or is it? Until recently, the pattern used to encode genetic information into our cells was considered to be relatively straightforward: four letters (A,G,C,T) for DNA and four (A,G,C,U) for RNA. -***-"The number of modified nucleotides (letters) in RNA is 10 times larger than that of the letters found in DNA. But what accounts for the evolutionary drive for a large RNA alphabet? RNA molecules have a wide variety of functions, including storage of genetic information as well as catalytic, structural, and regulatory activities. This is in contrast to the important but one-dimensional function of DNA in encoding genetic information.-"'The 140 or so different modifications that decorate RNA increase significantly the vocabulary of RNA and enable the various types of RNA, including mRNA, rRNA, tRNA, siRNA, miRNA and, lncRNA, to implement their versatile activities," said Prof. Rechavi.-"Prof. Rechavi's group, led by Dan Dominissini and Sharon Moshkovitz, began exploring the landscape of chemical modifications of messenger RNA (mRNA) four years ago through a specific modification: the addition of a methyl group in position 6 of Adenosine (m6A) in mRNA. The research team then showed that this modification is specific to unique regions of the mRNA molecules and that the modification can be "read" by specific proteins. They also showed that this modification is dynamic and responds to environmental stimuli.-"These findings complemented the identification by Prof. He's University of Chicago group at the time of an enzyme (FTO) that removes the m6A marks from mRNA. The demonstration of a reversible process that decorates mRNA and affects its stability, translatability, splicing, and localization established a new field of RNA "epigenetics" known as "epitranscriptomics-"In their new study, the researchers unraveled a new dynamic modification of mRNA -- the methylation of position 1 of Adenosine (m1A). Importantly, this modification was shown to be localized in a telltale position near the start of protein translation and linked to increased protein synthesis. Thousands of genes are decorated by this modification, allowing cells to regulate the expression of proteins needed for key biological processes."-Comment: Ever more complexity. It shows how 20,000+ genes make a complex human. How much complexity is needed before it is so complex it must be considered designed? With research it will only be shown to much more complex. Design?


Complete thread:

 RSS Feed of thread

powered by my little forum